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INTRODUCTION 

Methanol is a valuable chemical produced from several feedstocks 

and is consumed in a variety of end uses. Prior to the development of 

a synthetic route to methanol, commercial quantities were obtained from 

the destructive distil lation of wood [1, 2]. About half of the methanol 

currently consumed in the world goes into formaldehyde production [3]. 

Newer uses for methanol include a new technology for acetic acid [4], 

single cell protein [5], and water denitrification [6]. Methanol may 

potentially be used as a carrier for coal in pipelines, as a source of 

hydrogen or synthesis gas for direct reduction of iron ores, and as a 

direct additive to or a feedstock for gasoline [6]. The decomposition 

of methanol into hydrogen and carbon monoxide has been proposed as a 

means for the storage of solar energy [7]. Catalytic steam reformation of 

methanol for onboard hydrogen generation (hydrogen engine) seems to-be 

a potential fuel-related use of methanol [8, 93. 

The synthesis of methanol from hydrogen and carbon monoxide pre

dates World War I, when Badische Anilin-und Soda-Fabric AG in Germany 

succeeded in this synthesis by the reaction; 

"(g) "  2"2(g) -
= CHLOH (1 )  

But CO and also react in other ways [10] such as: 

"(g) + "2(9) = "™(9) ( 2 )  

"(9) " 3 "2(g) -
(3) 



www.manaraa.com

"°(g) + Z"2(,) = C"4(g) *  "2(g) <"> 

""(g) * (2"+')"2(g) - C""(2n+2)(g) + "^(g) <5) 

2C°lg) •  "2(g) * C(s) <« 

If these reactions should occur, then the secondary reactions may also 

proceed: 

"(g) '  V(g) -  "2(g) + "2(g) 

2C"3°"(g) = C"3°C"3(g) + V(g) «'  

CKjOH,^) 4. „C0 4. 2nH2(g) = (9) 

CHjOH(g) + nCO + 2(n-I)H2,g, = Cn"(2n+,)C°°"(g) + <'0) 

All these reactions are undesirable when the aim of the synthesis is 

methanol. So, by using a selective catalyst, the formation of methanol 

may be made predominant, and by choosing a set of appropriate operating 

conditions, all of the undesirable reactions may be minimized. Values 

of the free energies of some of these reactions have been reported by 

Paul [11] and Natta [12]. 

Until around 1966, the only commercial catalyst available for 

methanol synthesis was the old historic ZnO/CrgO^ catalyst. A tempera

ture of about 623 K and a pressure of about 3.5x10^ Pa are required for 

producing CH^OH over this catalyst. The old literature (up to 1955) 

concerning synthesis of methanol over pure zinc oxide and promoted ZnO 

has been discussed by Natta [12]. Around 1966, Imperial Chemical 
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Industries (ICI) reported discovery of a new low-pressure methanol 

catalyst [13, 14], consisting of CuO/ZnO/Cr^O^ or CuO/ZnO/AlHow

ever, the activity and selectivity of copper based catalysts for 

methanol synthesis had been known prior to commercial util ization [15]. 

The stumbling block, preventing earlier use of the catalysts, is the 

sensitivity of the catalysts to sulfur. This has been solved by the 

development of methods to remove sulfur from natural gas before it is 

reformed [16]. 

There are three principal routes to synthesis gas, CO+H^ [6]: 

steam reforming of lighter hydrocarbon feedstocks, primarily methane 

and naphtha, partial oxidation of lighter hydrocarbon and residual oil 

feedstocks, and coal gasification. 

The following catalytic liquid-phase process [17] has been dis

closed : 

3C°(g) + + :C°2(g) 

The process is carried out over CuO/ZnO catalyst at a pressure of 

4.3x10^ Pa and a temperature of 568 K. A 20% CO conversion into CH^OH 

in 30 min. has been claimed [1?]. The process obviates the need for 

synthesis gas produced by steam reforming of naphtha or natural gas, 

and could lead to a reduction in methanol production cost. 

A noncatalytic process for methanol synthesis has also been dis

closed by Brockhaus [18]. In this process, a mixture of methanol and 

formaldehyde can be obtained in good yield by a noncatalytic partial 

oxidation of methane, viz., 
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3C"4(g) + i  °2(g) " "'^' '2(9) " (12) 

The methanol and formaldehyde yields were claimed to be 71% and 14%, 

respectively. The process operates at a pressure of 6.1x10^ Pa and a 

temperature of 713 K. 

Poutsma £].• [19] have recently reported that palladium (as well 

as Pt and Ir) deposited on sil ica had, at 533 K to 623 K and 1.2x10^ Pa 

g 
to 1.0x10 Pa, excellent catalytic activity for methanol synthesis with 

only very small amounts of hydrocarbon by-product. This result contrasts 

with other reports [20] that under moderate synthesis gas pressures 

these metals catalyze largely methane formation. 

Many metal carbonyl complexes have recently been reported as 

homogeneous catalysts for hydrogenating CO to methanol at pressures 
o 

substantially above 1.0x10 Pa [21, 22]. A ruthenium carbonyl catalyst 

has been found quite active for hydrogenating CO to methanol and 

ethylene glycol under moderate pressures (below 3.4x10^ Pa) [23]. 

A process for the manufacture of gasoline from methanol and/or 

dimethyl ether was announced by Mobil Corporation [24]. The catalyst 

is a shape-selective zeolite catalyst (ZSM-5). The importance of this 

process lies in the pjssibi1ity of converting either coal or natural gas 

via methanol (a well-established old technology) to gasoline. Conversion 

of coal into gasoline (Fischer-Tropsch reaction) had been practiced in 

Germany during World War II, and the process is stil l in practice in 

South Africa [25]. However, the Mobil process (methanol to gasoline) 

adds a new dimension to the importance of methanol as a potential source 
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of fuel. Gigantic methanol plants can be operated near Middle East 

gas sources. Moreover, the use of renewable resources (biomass) for 

producing methanol might assume an important role in solving future 

energy shortages. 

The simplest possible compounds that can result from the hydrogéna

tion of carbon monoxide are: formaldehyde, methane, and methanol. Be

cause of its potential simplicity, the direct synthesis of formaldehyde 

from CO and had been the subject of considerable study in the old l it

erature [26]. The failure of most investigators to obtain more than a 

trace of formaldehyde may be due either to an unfavorable equilibrium 

or to lack of the proper catalyst. The equilibrium constant for the 

reduction of CO over ZnO/CuO catalysts was determined by Newton and 

Dodge [26] for the reaction: 

CO(g) - Î CHjOjg) 

The total pressure was about 3-0x10^ Pa. According to their findings, 

as based on experiments at 523 K, the equilibrium constant of the CH^O 

synthesis is given as follows: 

P(CH 0) 

^ " PIcoTPTHP" ^3) 

^ - 5-43) (14) 

where T is the reaction temperature in degrees Kelvin and 1 atm. = 

1.013x10^ Pa. Yield calculations based on this formula [27] had indi

cated that impractically high pressures would be required to obtain 
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useful yields. For example, at a temperature of 400 K, a yield of 6.9 

(mole percent of CH^O) requires a pressure of 1x10^ atm. In addition 

to this problem, an extremely active and selective catalyst would be 

needed to obtain equilibrium at a reasonable rate and at the same time 

avoid hydrogénation of the formaldehyde produced to methanol. The 

equilibrium constant for the hydrogénation of formaldehyde to methanol 

was also determined by Newton and Dodge [26] over several catalysts 

including ZnO/CuO mixed catalysts. The equilibrium constant for the 

reaction; 

"2'>(g) ^ "2(g) * C"3°"(g) <'5) 

i5 given as fol lows : 

PfCHgOH) 

" plDÇôTRiÇT 

The temperature dependence of K^, as given by Newton and Dodge [26], 

is given by the equation: 

where T is the reaction temperature in degrees Kelvin. From this 

equation it is possible to calculate, for equilibrium at atmospheric 

pressure, that dehydrogenation of CH^OH vapor into CHgO and would be 

46% at T=673 K, and 98% at 973 K. These yields are not readily obtained 

by dehydrogenation alone, since in the absence of oxygen (or air) the 

dehydrogenation reaction is relatively slow compared to the rate of 

CHgO decomposition to CO and [28]. At present, no process is 
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available for the direct synthesis of CH^O from synthesis gas (H^+ CO). 

Indirect synthesis is accomplished via the catalytic dehydrogenation 

of CHgOH over Ag, Cu, or FegOg-MoO^ catalysts [28]. 

The equilibrium between CO, and CH^OH (reaction 1) is highly 

dependent on the temperature and on the partial pressures of the gases. 

For the reaction: 

"(g) " 2";(9) * 

the equilibrium constant is 

f(CH OH) 
Kf  =  =  e  R '  (18)  

f(C0)'f^(H2) 

where = reaction equilibrium constant based on the fugacity of 

reactants, f(i) = fugacity of component "i", and AG is the free energy 

change of the reaction. At standard conditions, the pressures approxi

mate the fugacities, thus: 

Kf = 

P(CH-OH) Y(CH,OH) 
- . 2 -] [ S ] 

P(C0).P^(H2) Y(CO)-Y (H^) 

N(CH-OH) -
= I  ^ ] K p-2 (19) 

N(C0)-N^(H2) ^ 

where N(i) is the mole fraction of component "i", P is the total pres

sure, Y(') is the activity coefficient of component "i", and K° is the 

reaction equilibrium constant based on partial pressures of reactants 

when the total pressure is 1 atm. The values of K° as calculated by 
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various investigators have been reviewed by Strelzoff [10], who con

cluded that the values obtained by Cherednichenko [29] were good 

representatives, namely: 

log K° = - 7.492 log T + 1.77xlO"^ T - 3.11xlO"® + 9.218 

(20 )  

where T is the reaction temperature in degrees Kelvin, and K" is in 

- 2  
atm. , The activity coefficient ratio, K^, for methanol synthesis was 

calculated by Ewell [30] at different pressures and temperatures. 

Rearrangement of Equation 19 gives the equilibrium mole fraction of 

methanol as follows; 

^ Y 

Since K° decreases with increasing temperature (see Equations 18 and 

19), and increases with temperature [30], Equation 21 shows that 

Nch^OH should decrease with increasing temperature. The equation also 

shows that Nqh^OH increases with pressure to the second power. The 

predictions of Equation 21 are in accordance with Le Chatelier's 

principle. The methanol synthesis reaction is a highly exothermic 

reaction ('^^298 ~ "SO-64 kJ mol ') and three moles of the reacting gases 

result in one mol of product. Thus, high pressure and low temperature 

would drive the reaction toward completion. Because of these thermo

dynamic predictions regarding the methanol synthesis, together with the 

inherent economic advantages of the low pressure technology, the high 

pressure, high temperature units (ZnO/CrgO^ catalyst) are in the 
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process of being phased out or converted to low pressure units 

(ZnO/CuO/CrgOg or ZnO/CuO/AlgO^ catalysts). 

To investigate the feasibility of methanol synthesis at T=573 K 

and a total pressure of I atm. in a static reactor with an initial mix

ture of COzHg = 1:2, the following was done: 

<" c°(g) + Z"2(9) * C"3°"k) 

(2) Let the amounts of CO and Hg at zero time reaction = 1 and 2 

mol, respectively. 

(3) Let the fraction of CO converted to CH^OH at equilibrium = x. 

(4) The total relative number of moles at equilibrium = 3-2x. 

(5) Using Equation 20, K° = 3.08x10 ^ atm. ^ at 573 K. 

(6) Using Equation 21, with = 1, and = 1 : 

NcHjOH = (3.08x10-'') - 3^^ . 

(7) Assuming that l-x=l, 2-2xz2, and 3-2x=3, and solving for x 

gives x = 1.369x10 This conversion (about 1.4x10 ^%) 

corresponds to PCH3OH = 4.6 Pa. This pressure is too small 

to be detected in a total pressure of 1 atm. = 1.013x10^ Pa. 

The above example demonstrates that if one is seeking a kinetic and/or 

mechanistic study of the methanol synthesis in a static reactor, the 

best approach is to study the reaction in the reverse direction, i.e., 

the decomposition of methanol to carbon monoxide and hydrogen. The 

principle of microscopic reversibility assures that all the information 

obtained by studying the decomposition reaction is applicable to the 
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synthesis reaction. 

Two main approaches have been adopted in studying the kinetics of 

the methanol synthesis. The first approach is based on fitting the 

synthesis data, obtained under conditions close to those encountered 

industrially, to a certain rate law [12, 31]. For example. Natta [12] 

found that his data could be fitted by the following rate equation: 

f(CO)f^(Hj - f(CH,OH)/K° 
r = E (22) 

[A + Bf(CO) + Cf(H,) + DftCHgOH)]^ 

where r^ = rate of methanol formation. A, B, C, and D are constants 

that vary with temperature. The data were obtained over ZnO/Cr^O^ and 

Zn0/Cu0/Cr202 catalysts in the temperature range 573 K to 663 K and at 

total pressure of 2x10^ - 3x10^ Pa. The rate-determining step proposed 

in deriving Equation 22 was a trimolecular surface reaction, viz., 

CO* + t CHgOH* + 2vc (23) 

where the star, a, represents an unoccupied site on the catalyst surface. 

On the other hand, Uchida and Ogino [32], who carried out the methanol 

synthesis over ZnO/Cr^O^ catalyst in the temperature range 573 K to 

633 K and at total pressure of 9x10^ - 1.5x10^ Pa, reported the follow

ing rate equation: 

r^ = k{[P(CD)-p2(H2)]°'7 - P (CH^DH) [P (CO)-P^ (H^) ]"°" ̂  (K^"'} (24) 

where k is a constant at a definite temperature. The rate-determining 

step assumed in deriving Equation 24 is the desorption of methanol. A 

logarithmic adsorption isotherm was also assumed. However, Leonov 
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et aj_. [33] have proposed that hydrogen adsorption is a rate-determining 

step in the methanol synthesis over ZnO/CuO/Al^O^ catalyst. 

The second approach used in studying the kinetics of the methanol 

synthesis reaction is based on carrying out the synthesis reaction at 

a constant pressure (usually less than 1x10^ Pa) in a closed flowing 

system. The methanol formed during the experiment is condensed in a 

cold trap and the rate of the reaction is followed by the pressure de

crease [34, 35]. As was pointed out earlier, when the total pressure is 

1x10^ Pa (1 atm.), the equilibrium pressure of the produced methanol is 

about 4.6 Pa. This means that the per-pass conversion of CO into 

CH^OH in a closed circulating system is extremely small. Consequently, 

longer times are required in order to obtain a measurable quantity of 

methanol. Temkin [35] studied the kinetics of methanol synthesis over 

ZnO/CrgOg catalyst in the temperature range 457 K to 575 K at a total 

pressure of 1.5x10^ - 8.6x10^ Pa and concluded that hydrogen adsorption 

is a rate-determining step. On the other hand, Saida and Ozaki [34], 

who attempted to study the hydrogen isotope effect on methanol synthesis, 

reported the following rate law: 

kP(C0)p2(H_) 
r  = 2 (25) 

[1 + a^PfH^) + a2P(C0)]Z 

where k, a^, and a^ are constants at a definite temperature. Their 

study was carried out on a ZnO/CuO/CrgO^ catalyst at 453 K with total 

4 4 
pressure of 2x10 - 4x10 Pa. Although their rate law shows that the 

rate of methanol production, r^, depends on PfHg), no hydrogen isotope 

effect was detected. 



www.manaraa.com

12 

The copper-based catalysts (ZnO/CuO/M^O^, M=A1 or Cr) are receiv

ing much attention in the recent l iterature with emphasis being placed 

on their structure [36-38]. Herman e^£j_. [38] discovered that the 

copper-based catalysts contain a new compound identified as a Cu(l) 

solution in ZnO. The dissolution of Cu(l) in ZnO is probably favored by 

the fact that Cu(l) is isoelectronic with Zn(ll) and it assumes, l ike 

Zn in ZnO, a tetrahedral coordination [39]. According to Herman et al. 

[38], the Cu(l) centers nondissociatively chemisorb and activate CO, 

while the ZnO surface activates H^. The hydrogénation of CO occurs by 

a series of steps, one of which causes the hydrogénation of the oxygen 

end of CO and another causes the hydrogenolysis of the Cu-C bond. 

Herman £t £j_. [38] also remarked that catalyst deactivation in CO/H^ 

mixtures is explained as the reduction of Cu(l) to inactive Cu metal, 

while the rate enhancing effect of Og, HgO, and CO^ is due to the 

maintenance of an oxidation potential high enough to keep the copper in 

the active Cu(l) state. 

Infrared (IR) spectroscopic evidence of formyl species (HCO) formed 

by CO and H^ co-adsorption on ZnO and CuO/ZnO has been recently reported 

by Saussey et al. [40]. The IR spectrum of a mixture of CO and Hg 

adsorbed on ZnO or ZnO/CuO showed a pair of weak bands at 2770 and 2661 

- ] 
cm , while a mixture of CO and gave rise to a corresponding single 

band at 2020 cm ^. Saussey e^ [40] assigned these bands to vibra

tions of a surface formyl species. 

The kinetics of methanol decomposition (reverse reaction of methanol 

synthesis) has been studied over pure ZnO and doped ZnO by several 
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investigators [41-46]. These studies can be classified into three cate

gories. The first category involved establishing the kinetic order of 

the methanol catalytic decomposition reaction [4l, 42]. According to 

Dohse [41], the catalytic decomposition of methanol over ZnO proceeds 

via a scheme of two first-order reactions. The first step is the 

dehydrogenation of methanol into hydrogen and formaldehyde and the second 

step is the decomposition of formaldehyde into hydrogen and carbon 

monoxide. The same scheme was also adopted by Tamura [42]. The 

second type of study aimed at establishing a relationship between the 

apparent activation energy of the methanol decomposition reaction and 

the nature of the doping ion used to induce a change in the semi conduc

tivity of ZnO [43-45]. The doping ions used were Li(I), Al(ll l), and 

Ga(lll). Contradicting results were reported in this regard. For 

example. Dandy [43] found the same apparent activation energy for doped 

and undoped ZnO, while Menold [44] reported that doping affects the ZnO 

activity towards methanol decomposition. In the third category, followed 

by Ueno £t £l_. [46], infrared spectroscopy was applied to identify and 

study the dynamic behavior of the surface species occurring during the 

decomposition of methanol over ZnO catalysts. Formate and methoxide 

species have been detected by using this approach. 

The adsorptive behavior as well as the decomposition of both methanol 

and formaldehyde over some methanation metal catalysts have been the 

subject of several ultrahigh vacuum investigations [47-52]. A major goal 

of these investigations was to elucidate the mechanism of the methanation 

reaction which has long been suspected to involve surface intermediates 
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such as HCO (ads.) or HCOH (ads.) [53]. 

In conclusion, the kinetics as well as the mechanistic aspects of 

both the methanol synthesis and its decomposition are far from being 

completely understood. Since ZnO is a major component of any recipe 

used for methanol synthesis, pure ZnO was used as catalyst in the 

present study of the kinetics of methanol decomposition. An ultrahigh 

vacuum technique was chosen in order to study the decomposition reac

tion under wel1-defined conditions. As previously explained, the 

equilibrium position precluded study of the synthesis reaction at low 

reactant pressures. The effect of the methanol pressure on the 

kinetics of methanol decomposition was established over two orders of 

magnitude (3 Pa to 130 Pa) pressure variation. Such wide range of 

reactant pressure was not achieved in previous studies of methanol 

decomposition. The kinetic hydrogen isotope effect on methanol de

composition was investigated (for the first time) by comparing the 

initial rate of CH^Ori decomposition with those of CH^OD and CD^OD. 

Most aspects of the present kinetic study were not attempted before. 

Following the experimental section, the findings of this study are dis

cussed in detail and a mechanism accounting for all the observations 

reported in this dissertation is proposed. 
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EXPERIMENTAL 

Apparatus 

The need for studying the kinetics of the ZnO-catalyzed decomposi

tion of methanol at low methanol pressures (P^ ^ 1.3x10^ Pa) required 

the design of a vacuum system. Figure 1 shows a schematic of the 

vacuum system used in this study. The vacuum system consisted of two 

major parts: the reaction enclosure part and the mass spectrometer 

part. These two parts were connected by a variable leak valve, which 

allowed continuous sampling from the reaction enclosure to the mass 

spectrometer part during the course of an experiment. 

The reaction enclosure was pumped by a two-stage mercury diffusion 

pump backed by a roughing pump. A base pressure of about 5x10 ^ Pa 

was attained in this part of the vacuum system. The residual gas pres

sure over the catalyst was measured by means of a conventional Bayard-

Alpert ionization gauge. Several glass storage bulbs, including one 

for CHgOH storage, were connected to the reaction enclosure via a glass 

manifold. This manifold was used for admitting the required amount of 

reactant or any other mixture of gases before expanding to the catalyst 

vessel. The pressure in the manifold was measured by means of a capaci

tance manometer (Granville Phill ips Co., series 212). Pressures up to 

3 
1.3x10 Pa were measured using this manometer. The reference side of 

the capacitance manometer was continually pumped to about 5x10 ^ Pa in 

order to obtain a stable baseline. The sensor head of the manometer 

was water thermostated at 306.5 K to prevent drift due to changes in the 

ambient temperature. The manometer was calibrated against a McLeod 
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]. Schematic of the vacuum system used in the kinetic study (shaded area = react 
volume = 2.0Ax10~3 m^) 
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gauge (Consolidated Vacuum Corp.) using argon gas. 

The pressure changes were read directly as a meter deflection on 

the manometer control unit, or recorded by means of an x-y recorder 

(Hewlett-Packard, series 7044A). The control unit of the capacitance 

manometer has five ranges with maximum pressures of approximately 13, 

40, 1.3x10^, 4.0x10^, and 1.3x10^ Pa. Each range yielded a linear 

calibration of the form: 

Pressure (Pa) = aX (scale deflection) + b 

The constant b was close to the sensitivity of the corresponding 

range. The original calibration was checked after several months and 

was found to agree with the recheck calibration within *10%. The pres

sures reported in the present study were calculated by using the average 

of these two calibrations. The volume of the manifold (shaded area in 

Figure 1 excluding the catalyst vessel) was measured by argon expansion 

from a standard volume (1.142x10 ^ m^ round bottom pyrex flask) attached 

to the manifold via an ultrahigh vacuum valve. The volume of the mani

fold was found to be 1.06x10 ^ m^. The catalyst vessel consisted of a 

500 ml round bottom pyrex flask. The volume of the vessel and its con

nections was measured by expanding argon from the manifold to the empty 

-4 3 
vessel at room temperature. Its volume was found to be 9.75x10 m 

— k 3 
of which 6.0x10 was estimated to be at the reaction temperature 

and the remainder was assumed to be at the ambient temperature. 

The catalyst vessel was heated by means of a tube furnace (S. B. 

Lindberg, type SP). The bottom of the furnace was sealed and the top 
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was covered to prevent air conduction through the furnace. In this man

ner, the catalyst vessel could be conveniently heated to any tempera

ture between room temperature and 775 K (the approximate softening 

point of pyrex). The temperature was monitored by a chrome 1-a 1umel 

thermocouple which was inside the tube furnace and in direct thermal 

contact with the catalyst vessel. The temperature of the reference 

junction of the thermocouple was maintained at 273 K by means of a 

slush of ice and distil led water. The potential difference between the 

high temperature and the cold temperature junctions was displayed on a 

digital multimeter (Hewlett-Packard, series 3465A) which has a sensi

tivity of I mV. The thermoelectric voltage was converted into actual 

temperature readings by means of the chromel-alumel thermocouple table 

supplied by Omega Engineering, Inc. During the actual time of an 

experiment, the temperature fluctuation was within ±0.5 K. 

The mass spectrometer part consisted mainly of a cold trap, 

quadrupole mass spectrometer, and an ion pump. The cold trap was main

tained at 195 K by means of a dry ice-acetone slush. The function of 

the cold trap was to condense methanol and/or formaldehyde before reach

ing the mass spectrometer. This trapping was necessary in order to 

eliminate the contribution of methanol and/or formaldehyde to peak 

^=28, which was used to monitor the production of CO during the high 

temperature decomposition experiments. The residual gas analyzer used 

was a Finnigan Spectrascan 400 quadrupole mass spectrometer (Finnigan 

Corp.). The output of the mass spectrometer was directed onto a two-

channel strip chart oscillographic recorder (Hewlett-Packard, model 
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IkOlk). An oscilloscope (Tektronix, Inc., type RM503) was occasionally 

used for the purpose of instrument adjustment and/or troubleshooting. 

The mass spectrometer output (signal in mV) was calibrated against the 

actual gas pressure in the manifold. The gas under consideration was 

leaked to the mass spectrometer via the variable leak valve shown in 

Figure 1. The calibration resulted in establishing a sensitivity 

gas pressure in Pa ^ , 
factor Sj = ^—signal in mV each gas used in this study. No 

reliable sensitivity factors were obtained for methanol or formaldehyde 

due to the slow attainment of a steady flow through the leak valve. 

The ion pump used is a 20 & s ^ differential ion pump (Ultek, model 

203-2000). The pump was used in conjunction with two two-stage mercury 

diffusion pumps backed by a roughing pump. This arrangement of pumps 

-8  
resulted in the attainment of a base pressure of 5x10 Pa in the mass 

spectrometer part of the vacuum system. The purpose of having the ion 

pump was to attain ultrahigh vacuum pressures required for depositing a 

thin fi lm of zinc metal, which could then be oxidized into a fi lm of 

ZnO. However, the ZnO fi lms obtained were found to be both thermally 

instable and catalytically inactive. Consequently, no kinetic study 

was performed on such ZnO fi lms and a powder sample of ZnO was used in

stead. The ion pump was found helpful in protecting the mass spectrome

ter during periods of system malfunction or shutdown. 

The multi-purpose port shown in Figure 1 was used for attaching to 

the vacuum system the McLeod gauge, standard volume, apparatus fcr 

handling CH^OH, apparatus for handling the deuterated compounds, or the 

apparatus used for formaldehyde preparation. The CH^OH handling 
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apparatus consisted of two round bottom pyrex flasks in which CH^OH was 

purified by bulb-to-bulb vacuum distil lation before use. One of the 

flasks had a breakable glass seal and was used as a storage bulb for 

liquid CHjOH as indicated in Figure 1. A similar apparatus was used 

for handling DgO, CH^OD, and CD^OD. The two deuterated methanols, 

CHgOD and CD^OD, were injected into the handling apparatus by means of 

a 10 )j£ syringe (Hamilton Co.). The injection was carried out through 

a rubber-capped glass tube extension attached to the handling apparatus 

via a vacuum stop cock. The vapor pressure of both CH^OD and CD^OD 

inside the handling apparatus was maintained below the room temperature 

4 
saturation pressure of methanol, which is about 1.3x10 Pa. 

The apparatus used for the preparation of formaldehyde was similar 

to that described by Spence and Wild [54]. The flow reactor apparatus 

used for testing the production of formaldehyde during the ZnO-catalyzed 

decomposition of methanol consisted of three major parts. The f irst 

part was a pyrex glass tube (reactor) held in a vertical position and 

heated by a tube furnace. About two grams of ZnO powder was placed in 

the bottom of the reactor. The second part of the flow apparatus con

sisted of a 500 m£ round bottom pyrex flask through which a helium 

stream was passed in order to carry methanol vapor to the reactor. 

Methanol in the flask was kept at its boiling point by means of a heat

ing mantle. The third part was a 500 m£ pyrex conical flask, containing 

about 250 mZ distil led water. The effluent gas, after leaving the reac

tor, was directed through the conical flask in order to get an aqueous 

solution of formaldehyde. 
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The instrument used for the surface area measurements was Orr 

surface-area pore-volume analyzer (Micromeritics instrument Corp., 

model 2100D, serial number 348). Computation of the BET surface area 

of the ZnO catalyst sample was accomplished by a computer program, 

which is included in the instrument manual. About 0,3 to 0.6 g of ZnO 

powder sample was outgassed at 393 K for 17 hours. Nitrogen was used 

as the adsorbate and a molecular area of 1.62x10 ^ nm^ was assumed for 

Ng. The adsorption temperature was 77-2 K at which the saturation 

vapor pressure of nitrogen is 9.962x10^ Pa. Values of ranged from 
o 

0.04 to 0.15, where P^ is the saturation vapor pressure of nitrogen at 

77.2 K and P^ is the equilibrium pressure of nitrogen over the adsorbent 

(ZnO) at the adsorption temperature. The purity of a ZnO catalyst 

sample was examined by high dispersion emission spectographic analysis, 

in addition, the sample was analyzed by energy dispersion x-ray 

fluorescence spectroscopy (Tracor x-ray, model 440). All the metal 

vacuum valves shown in Figure 1 were purchased from Granville Phill ips 

Co. 

Kinetics Procedure 

The kinetics of methanol decomposition on ZnO was studied over two 

temperature ranges 453 K to 513 K and 563 K to 613 K. Dehydrogenation 

of methanol into hydrogen and formaldehyde was studied in the low 

temperature range, while the total decomposition of methanol into 

hydrogen and carbon oxides was studied in the high temperature range. 

The effect of CH^OH pressure on the initial rate of production in 
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the low temperature range was examined at 500 K. CH^OH pressures of 

about 3 Pa to 31 Pa were used at this temperature. The high tempera

ture CHgOH decomposition, where CO, COg, and were produced, was 

studied at 593 K. CH^OH pressures ranged from about 3 Pa to 130 Pa at 

593 K; 10.8 Pa of CH^OH, CH^OD, or CD^OD was used for investigating 

the temperature dependence of the initial rate of methanol decomposi

tion in both temperature ranges. Pressures of up to 10 Pa of CH^OH or 

CH^O were used in comparing the initial rates of decomposition of CH^OH 

and CHgO at 500 K. 

Before starting a kinetic experiment, the required amount of 

reactant was f irst dosed in the manifold. The pressure of the reactant • 

in the manifold was then recorded at the moment of admitting the reac

tant to the catalyst, which was held at the reaction temperature. The 

initial reactant pressure over the catalyst was calculated by using the 

following equation: 

P(man. + cat. ves.) = r. P(man.) (26) 

where r = expansion factor. Assuming that at low reactant pressure 

(maximum reactant pressure laed ~ 130 Pa), the ideal gas law is applica

ble, the expansion factor, r, can be given at any reaction temperature 

as follows: 

(27) 

where V(man.) = 1.06x10 ^ m^, V(cat. ves.) = 6.0x10 ^ n?, and V(con.) = 
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volume of the connections that hold the catalyst vessel to the vacuum 

system = 3.8x10 m . At room temperature, T(man.) = T(con,) = 

T(cat. ves.) = 298 K and the expansion factor becomes: 

_ P(man. + cat, ves.) _ y(man.) _ 1.06x10 ^ m^ 
"" ~ P (man.) V (man. ) + V (con. ) + V (cat. ves.) ~ ^ 04x10"^ m^ 

= 0.52 . 

However, when T(cat. ves.) > T(man.) = T(con.) = 298 K, the expansion 

factor can be obtained from the following equation: 

^ _ P(man. + cat, ves.) _ T(cat. ves.) ^^g) 

1.36 T(cat. ves.) + 1.69x10^ 

where T(cat. ves.) = reaction temperature in degrees Kelvin. For 

example, when the reaction temperature is 573 K, Equation 28 yields 

r = 0.60. Figure 2 is an experimental verification of Equation 28 for 

the case T(cat. ves.) = 573 K. The slope of the least-squares line in 

Figure 2 is equal to the expansion factor, r. From Figure 2, r = 0.61 

which is in excellent agreement with the value calculated using 

Equation 28. Equation 28 was found to be obeyed by several gases includ

ing CHgOH vapor as shown in Figure 2. In the temperature range 453 K to 

623 K, the variation of r with T(cat. ves.) is small (O.58 < r < 0.62), 

so a mean value r=0.60 was used in calculating the initial reactant 

pressure in this temperature range. 

It should be pointed out that both methanol and formaldehyde were 

found to adsorb to the walls of the reaction enclosure with methanol 

being more strongly adsorbed than formaldehyde. For this reason, the 

methanol or formaldehyde vapor was not allowed to equilibrate in the 
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Figure 2. Plot of the relation: P(man. + cat. ves.) = rP(man.) at 573 K 
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manifold. This was done to avoid errors in estimating the initial 

reactant pressure over the catalyst that might be caused by desorption 

from the manifold walls after expanding the reactant vapor to the 

catalyst. 

It was found during the course of this study that both ch^od and 

CDjOD exchange rapidly their hydroxy 1 hydrogen with that of the hydroxy! 

group on the glass walls of the reaction enclosure as was indicated by 

the recorded mass spectra. In the case of ch^od, the recorded mass 

spectrum was identical to that of ch^oh and no peak at ^ = 33 (ch^od) 

was detected. To eliminate this problem, the reaction enclosure 

together with the catalyst were treated with DgO. Several cycles of 

dosing and pumping out of DgO vapor were carried out until the peak of 

•^=17 (oh) became very negligible as compared to that of •^ = 20 (dgo). 

The reaction enclosure was then baked out at about 650 K for about 12 

hours. 

Prior to each kinetic experiment, the catalyst was treated with 

about 67 Pa of 0^ at the reaction temperature for all the experiments 

carried out at T s 513 K. However, in the case of the kinetic experi

ments carried out at T 2 563, the catalyst temperature was f irst lowered 

to about 523 K before admitting oxygen. This was done in order to have 

a common oxygen treatment for the low temperature and the high tempera

ture kinetic experiments. In both cases, after admitting 0^, the 

catalyst temperature was raised to 623 K at a rate of 0.2 K s ' . At 

623 K, the oxygen was pumped out and heating was continued up to 673 K. 
•j 

Outgassing at this temperature lasted for 1.8x10 sec. The catalyst 
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temperature was then lowered to the reaction temperature, i t should be 

mentioned that the termination of a kinetic experiment involved the 

evacuation of the gas phase over the catalyst before admitting oxygen. 

Mass spectrometric analysis of the gas phase over the catalyst at the 

end of the oxygen treatment revealed the presence of 0^, CO, COg, and 

as the major gas phase species. 

In the absence of oxygen, the outgassing of the catalyst (after the 

termination of a CH^OH kinetic run), while increasing the temperature up 

to 673 K, resulted in the formation of a zinc fi lm on the cold parts of 

the catalyst vessel. This was noticeable for runs that involved about 

100 Pa of methanol vapor. However, the oxygen treatment, as described 

above, was found to eliminate the catalyst reduction and resulted in 

fairly good experimental reproducibility. The ultrahigh vacuum valve, 

which separates the cold trap from the reaction enclosure, was valved 

off during the oxygen treatment. This was done in order to protect the 

electron multiplier of the mass spectrometer from oxygen exposure. 

The variable leak value, shown in Figure 1, was left at the same 

setting during the course of this study. The setting was adjusted by 

using argon gas at a pressure of about 65 Pa. Over a period of about 

1.8x10^ sec., the argon pressure in the manifold remained almost con

stant and the residual gas pressure in the mass spectrometer chamber 

was below 5x10 ^ Pa. While higher leak rates might improve the mass 

spectrometer sensitivity, the mass spectrometer assembly must be main-

-3  
tained under a vacuum of 5x10 Pa or better. Such a vacuum is neces

sary to prevent slow discharge of the radio frequency section and arcing 
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of the electron multiplier. The mass spectrometer was operated at a 

fi lament emission current of I mA and an electron energy of 70 eV. 

Since the initial rates of product formation were measured during 

120 sec. of reaction or less, the loss of a product due to leakage 

through the leak valve is negligible. In this case, the vacuum system 

used in this study was essentially a static reactor. 

The decomposition of CH^OH and/or CHgO was followed by monitoring 

peaks at ^ = 2 ^ = 28 (CO), and ^ = 44 (COg). The cont ri but ion 

of COg to the •^ = 28 fragment was taken into consideration and was sub

tracted from the total signal of the ~ = 28 peak. The mass spectrum 

of pure COg revealed that 

h(-= 28) 

—î 0 . 1 ,  
hÇ= 44) 

where h = peak height. Consequently, in a mixture of CO and COg, the 

contribution of CO^ to the ^ = 28 peak will be (0.l)[h(^= 44)]. 

The initial rate of total hydrogen production during the decomposi

tion of CHgOD was determined by monitoring peaks at -^ = 2 (H^), "=3 

(HD), and ^ = 4 (Dg). The sensitivity factors required for converting 

- 1  - 1  
the mass spectrometer signal into Pa s or mo? s were obtained by 

the direct calibration of the mass spectrometer against the capacitance 

manometer for Hg, D2, CO, or COg. The sensitivity factor for HD was 

obtained by dosing a 1:1 mixture of Hg and D^ in the manifold followed 

by leaking to the mass spectrometer. The following reaction: 

"2(g) " "2(9) -
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was found to be promoted by the walls of the reaction enclosure at room 

temperature. Probably the reaction took place via adsorption on a 

metal surface. The ionization gauge wires, although the gauge was off, 

might have catalyzed this reaction. However, rapid equilibration of 

H2 and Dg was observed when an electric discharge coil (Tesla coil) 

was brought close to the glass part of the manifold. The HD sensitivity 

factor was calculated as follows: 

Equilibration at room temperature (-298 K) gives the following 

relation: 

1' 

2' • '9 
p(hj'"?'(l = ^98 (3°) 

Urey and Rittenberg [55] calculated a value of 3.27 for Kggg' while 

Jones and Sherman [56] reported a value of 3.28 for Kg^g. A value of 

3.28 was assumed for Kggg in calculating the sensitivity factor of HD. 

Interestingly, it was found that the HD sensitivity factor obtained 

from knowledge of the equilibrium constant is equal to the arithmetic 

mean of the Dg and H^ sensitivity factors. It should be pointed out 

that only the total hydrogen production was of interest during the 

decomposition of CH^OD. Whether the H^-D^ equilibration was attained 

or not is immaterial. 

The initial rates used for evaluating the apparent activation 

energies were obtained by carrying out the reaction under consideration 

for 120 sec. The initial rate of product formation was then assumed to 

be the average amount of a product produced in 120 sec. The same 

procedure was also adopted in calculating the initial rates of CH^OH 
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and CH2O decomposition at 500 K. However, the initial rates of 

CO, and CO^ production at 593 K were obtained by carrying out the 

kinetic experiment of CH^OH decomposition for 60 sec. 

To express the initial rates of H^, CO, or CO^ production in a 

form suitable for reasonable l iterature comparison, the following 

procedure was used for reporting the initial rates: 

Initial rate of production of gas phase species "i" = R. 

„ _ f i rV(man.) + V(con.) . V(cat. ves.)i 
'  . wARt ^ T(man.) ^ 

Knowing that R = 8.32 m^ Pa mol ^ K \  V(man.) = 1.06x10 ^ m^, 

V(con.) = 3.8x10 ^ m^, V(cat. ves.) = 6.0x10 ^ m^, A = catalyst specific 

3  2 - 1  - 3  
surface area = 3.0x10 m Kg , w = weight of catalyst used = 1.0x10 

Kg, and T(man.) = ambient temperature = 298 K, Equation 31 reduces to: 

R. = (Ij.OlxlO"^) (4.83x10"^ + ) (^) mol m"^ s"' (32) 

where P. = pressure of gas phase species "i" in Pa (P. << 10^ Pa), 

t = reaction time in sec. (t S 120 sec.), and = reaction temperature 

in degrees Kelvin. 

Materials 

All of the gases used in the kinetic and isotopic studies were 

research grade gases. (99.5%), (99-97%), c'^O^^ (99-998%), 

Ar (99-9995%), and 0^^ (99-995%) were purchased from the Linde divi

sion of Union Carbide. (99-999%) was purchased from Matheson Gas 
t ^ l Q  1 0  l O  

Products. C 0 (90% C ,  95% 0 ) was purchased from Prochem 
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breakable seals. Their purities were confirmed mass spectrometri-

cally before use. 

DgO (99.7%) was purchased from Merck & Co., Inc. In a capped 

glass bottle. Chromotropic acid (analytical reagent grade) was 

purchased from Aldrich Chemical Co. as a hydrated sodium salt (4,5-

dihydroxynaphtha1ene-2,7-disulfonic acid, disodium salt dihydrate). 

Paraformaldehyde (purified trioxymethylene) was purchased from Fisher 

Scientific Co. The formaldehyde was prepared by the thermal depoly-

merization of paraformaldehyde at about 350 K in an apparatus similar 

to that used by Spence and Wild [54]. An edible white mineral oil was 

used as a heat-transferring medium in the preparation of the formalde

hyde. The formaldehyde vapor, after leaving the depolymerization 

flask, was condensed at 195 K. It was then frozen at 77 K in order to 

pump out any CO and/or that might have resulted during the depoly

merization step of paraformaldehyde. After this treatment, the 

formaldehyde was stored at 195 K in the liquid phase. This l iquid was 

used as a source of gas monomeric formaldehyde. Mass spectrometric 

analysis of the prepared monomer provided cracking patterns that agreed 

well with literature data [57]. Three major peaks were observed at 

^ = 30 (CHgO), ~ = 29 (CHO), and ^ = 28 (CO). The major peak was that 

of -^ = 29. No peaks were observed beyond ^ = 32. This observation 

implies the absence of the potential impurities methyl formate and 

trioxane. 

The CHgOH used in the kinetic study was of spectral quality and 
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was purchased from Burdick 6 Jackson Laboratories, Inc. The CH^OH 

sample used in this study was purified by bulb-to-bulb vacuum distil

lation before use. The sample was loaded onto the vacuum system in a 

pyrex bulb with breakable seal. CH^OD (>99.5%) and CD^OD (99.5%) 

were purchased from the Alfa division of Ventron Corporation. CH^OD 

was delivered in a capped bottle, while CD^OD was delivered in an 

ampule. The two deuterated methanols were transferred from their 

original containers into predeuterated glass vials. The handling was 

carried out in a dry box under argon atmosphere. The deuteration of 

the vials was carried out by rinsing them with DgO several times. The 

vials were capped with rubber caps in order to allow the use of a micro 

syringe as means of transferring the deuterated methanols from the 

vials to the vacuum system. 

After being loaded in the vacuum system, the three methanols gave 

mass spectra in agreement with those reported by Lester et al_. [58]. 

The only exception was the abundance of the ^=28 fragment. The 

three methanols gave a higher abundance (about 4 times) compared to 

that of reference [58]. Possible contamination with was considered 

and was ruled out on the basis of the similarity between the mass 

spectra of CH^OH before and after several thaw-and-freeze cycles. A 

possible explanation for the high abundance of the ^ = 28 fragment (CO), 

is a catalytic decomposition of methanol on the hot fi lament of the 

ionizer assembly inside the mass spectrometer chamber. 

The zinc oxide sample, used as a catalyst in this study, was 

purchased from the New Jersey Zinc Company. The sample was specified 
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by the manufacturer as ZnO SP 500 ultra grade (99.99%) and was manu

factured by burning zinc metal in oxygen. The manufacturer's certifi

cate of analysis of the ZnO sample (freshly ignited at 823 K to 873 K 

for 30 min.) indicated that sulfur is the major impurity (total sulfur 

as SO^ = 0.002%). The elements Fe, Cu, Mn, Pb, As, Cd, Al, Ca, Na, 

Si, and mg were reported as trace impurities (<100 PPM). A check on 

the supplied certificate of analysis was carried out by high dispersion 

emission spectrographic analysis and the energy dispersive x-ray 

fluorescence spectroscopic techniques. The results were in agreement 

with those reported by the manufacturer. 

The BET surface area of the ZnO sample was found to be 3.0x10^ m 

-1 -3 
Kg . The amount of ZnO catalyst used throughout this study was 1.0x10 

Kg. All the kinetic and isotopic results were obtained on the same 

batch of the catalyst. Before being placed in the catalyst vessel, the 

ZnO catalyst sample was heat-treated at 823 K for 90 min. After this 

thermal treatment, the catalyst sample was never subjected to tempera

tures beyond 673 K. 

The helium gas, used for the detection of formaldehyde in the flow 

reactor, was a high-purity helium and was supplied by the U.S. Depart

ment of the Interior, Bureau of Mines, Amarillo, Texas. 
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RESULTS AND DISCUSSION 

Temperature Dependence of CH^OH Decomposition 

The early stages of the work to be described here involved a pre

liminary study aimed at the establishment of the temperature dependence 

of CHgOH decomposition over ZnO. The study has indicated that a slow 

evolution of gas commences at 423 K, while a fast CH^OH decomposition 

takes place at 633 K. At the latter temperature, the formation of was 

accompanied by evolution of CO, COg, and formation of a Zn fi lm on the 

cold part of the catalyst vessel. On the other hand, no measurable gas 

phase thermal decomposition of CH^OH was detected up to 633 K. This 

observation is in accordance with the work of Fletcher [59], who reported 

measurable CH^OH thermal decomposition rates at T - 900 K. This implies 

that decomposition of methanol, as reported in the present study, at 

T ^ 633 K over ZnO is solely a catalytic decomposition. 

To identify the temperature at which CO and/or CO^ is being pro

duced via the catalytic decomposition of CH^OH, some nonisothermal de

composition experiments were carried out. Formation of both CO and COg 

commenced at T 2 550 K. Repeated isothermal decomposition experiments 

confirmed this result, it was also observed that CO and CO^ were pro

duced concurrently. 

Another interesting result obtained from the preliminary study is 

the observation that about 15% of the methanol hydrogen is being re

leased in the temperature range 453 K to 513 K without being accompanied 

by CO and/or CO^. This observation suggests that the decomposition of 
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methanol is probably occurring in stages. 

in an attempt to identify the first step in methanol decomposi

tion, the decomposition of CH^OH was compared with that of CH^OD in 

the temperature range 453 K to 513 K. The decomposition of CH^OD 

resulted in the formation of HD, and D^. Furthermore, the initial 

rates of hydrogen evolution were the same for the two methanols. In 

the case of CH^OD, the isotopic scrambling indicates that both the 

methyl and hydroxy 1 groups are responsible for hydrogen evolution. For

mation of Hg, HD, and D^, has also been reported by Goodman and his co

workers during the decomposition of CH^OD on Ru [60]. The observation 

that both CHjOH and CH^OD have the same decomposition rates suggests 

that the dissociation of the hydroxy 1 hydrogen, during the adsorption 

step on the catalyst surface, is unlikely to be a rate-determining step. 

A similar remark has been made by McKee [61] for the decomposition of 

methanol on Pt. The labile nature of the hydroxy! hydrogen in the 

methanol molecule has been demonstrated by carrying out the hydrogen 

exchange reaction between and CH^OH on Ni [62], ZnO, and other metal 

fi lms [63] whereby CH^OD was the major deuterated methanol. This was 

confirmed by mass spectrometric and IR measurements. Evidence and con

clusions concerning the hydrogen isotope effect will be discussed later. 

On the basis of the aforementioned observations, the kinetics of 

methanol decomposition was studied over two temperature ranges, 453 K 

to 513 K and 563 K to 613 K. These two temperature ranges will be re

ferred to as the low temperature and the high temperature ranges, 

respectively. The f irst range was chosen to study the kinetics of 
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evolution, while the second range was chosen to study the kinetics of 

CO and CO^ evolution. 

Detection of CHgO 

In his pioneering study on the catalytic decomposition of CH^OH 

on ZnO, Dohse [41] pointed out that the decomposition proceeds via a 

scheme of two first-order consecutive reactions. The f irst step is 

the dehydrogenation of CH^OH into and CH^O, and the second step is 

the decomposition of CHgO into CO and The presence of CH^O as an 

intermediate during the decomposition of CH^OH is not well-documented. 

Some researchers who tackled the kinetics of CH^OH decomposition on ZnO 

adopted Dohse's scheme [42-45, 64, 65], while others made no mention of 

CHgO [46, 66, 67]. 

In the present study, formation of CH^O via the catalytic decomposi

tion of CHgOH on ZnO was confirmed for both a flow reactor and a static 

one. In the case of the flow reactor, a chemical method was used to 

test for CH^O. The effluent gas, after leaving the catalyst bed, was 

passed through a flask containing distil led water. Addition of 

chromotropic acid to the test solution resulted in the formation of a 

purple color, which is indicative of the presence of CH^O. Formation 

of CHgO was confirmed at 523 K and 573 K. Chromotropic acid has been 

suggested as an analytical reagent for microdeterminations of formalde

hyde [68]. On the other hand, formation of CH^O in the ultrahigh vacuum 

system (static reactor) was confirmed by means of a mass spectrometer. 

This was done by observing the height ratio of two CH^OH peaks, namely, 
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h(— = 29)/h(— = 31). The mass spectrum of CH.OH has its intense peak 
6 6 J 

at •^ = 31 while CH^O has its intense peak at ^ = 29. Consequently, the 

mass spectrum of a mixture of CH^OH and CHgO should give the result 

[h(^= 29)/h = 31)] > 1. It was found in this study that both CH.OH 
6 6 j 

and CHgO give rise to an intense peak at -^ = 28. The fact that CO also 

gives rise to a peak at ^ = 28, which is used to monitor CO, demanded 

the condensation of both CH^OH and CHgO before reaching the mass 

spectrometer. This trapping made the detection of CHgO more difficult 

during the course of a CH^DH decomposition experiment. However, when 

the condensed vapor was released from the trap which separates the leak 

valve from the mass spectrometer, the recorded mass spectrum revealed 

an intense peak at ^ = 29 with the ratio [h= 29)/h(^= 31)] > 1. 

This observation indicated the presence of CHgO as a reaction product 

and was further substantiated by recording a mass spectrum for a mixture 

of CHgOH and CHgO leaked directly to the mass spectrometer. 

Formation of CHgO via CH^OH decomposition has been reported during 

CHgOH thermal decomposition [59], catalytic decomposition of CH^OH on 

ZnO [43, 69], on Ru [60], on W l70], and on Au [71]. CH^O can also be 

obtained via the partial oxidation of CH^OH on Cu [72], on Ag, and on 

MoO^-Fe^O^ [28]. The last three catalysts are the traditional industrial 

catalysts used for the manufacture of CH^O via the partial oxidation of 

CHjOH [28]. 

Catalyst Reduction and Evolution of COg 

As mentioned earlier, exposure of ZnO to CH^OH at 633 K resulted in 

the formation of a zinc fi lm on the cold parts of the catalyst vessel. 
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Formation of CO^ was always observed whenever CH^OH was brought in con

tact with ZnO at T 2 550 K. However, an overnight pumping on a ZnO 

sample at 673 K did not result in the formation of a zinc fi lm. This 

observation rules out the possibility of a surface sublimation or a 

thermal decomposition of ZnO. A surface reduction might take place by 

Hg and/or CO during a methanol decomposition experiment. To clarify 

this matter, a series of experiments was carried out. This included 

interactions of ZnO with c'^o'^, oj^, c'^o'^, CH^OH and the effect 

of oxygen treatment on the catalyst activity and CO^ production. 

1  • J  I D  

Interaction of C 0 with ZnO 

13 18 
In a series of runs, 7 Pa of C 0 was admitted to ZnO at dif

ferent temperatures. The results at 573 K and 623 K are shown in Figure 

13 18 
3. The mass spectrum of C 0 , before admitting to the catalyst, re

vealed the major peak at ^ = 31. Small peaks at ^ = 30, 29, and 28 

were also observed. These small peaks are probably due to the presence 

of CO isotopic impurities, i.e., C^^o'®, C^^o'^, and C^^o'^, respec

tively. The mass spectrum of the gas phase over the catalyst revealed 

that peaks of •^ = 31 and ^ = 30 were decreasing with time, while peaks 

of -^ = 29 and ^ = 28 were increasing. This behavior can be explained 

if we assume the following oxygen exchange reactions: 

(33) 

(34) 

'^0(9) 
= zno|gj 

'^°(g) 
.  zn0|6, 
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'^°(g) = Zn0|^) " C ^O(g) (35) 

'^°(g) + ZnO(g) = Zn0|6) (36) 

The last three reactions are believed due to isotopic impurities 

of CO. Of course, the last two reactions result in no chemical change. 

l o i o  1 9 1 f t  
This scheme suggests that only C 0 and C 0 will be depleted from 

the gas phase, while C^^O^^ and c'^o'^ will increase with time. Indeed 

this was the actual behavior of the peaks as indicated by the mass 

l O l Q  1 7  

spectrometer. Since CO is an impurity in C 0 , which has 90% C 

and 95% o'®, only the changes in height of the ^=31 and ^ = 29 are 

shown in Figure 3- The fact that no peak was detected at ^ = ^7 
in 1p 

( c o o )  d u r i n g  t h e  i n t e r a c t i o n  o f  C  0  w i t h  Z n O  i s  a n  i n d i c a t i o n  

that COg was not being produced in these experiments. The oxygen ex-

13 18 
change reaction between ZnO and C 0 was used as a means of enriching 

1p 
the ZnO surface with 0 for further studies. Figure 3 also shows that 

the exchange reaction is enhanced by raising the temperature. The 

oxygen exchange reaction between ZnO and CO has been reported by 

Carnisio e^ aj_. [73]. 

16 18 
Interaction of £^ with £ -enriched ZnO 

Another experiment, which supplements the previous oxygen exchange 

18 16 
reactions, consisted of treating the 0 -enriched ZnO with 0^ gas (at 

1 o 1 O 

T = 623 K and 60 Pa Og) after pumping out the C 0 gas. After two 

hours of Og^ interaction with zinc oxide, a mass spectrum was recorded 

which revealed the existence of the following gas phase species: 
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(^ = 32), o'^o'®(^= 34), ( j= 29). (^ = 28), 

c12o18(£= 30), Cl2c^6(£= 44), = 45), and cIZqISqI^ (E= 46). 

No peaks were observed for c'^O^®, c'^o'®, and c'3o^8_ The 

absence of the last three species implies that no was left in a 

molecular form on the catalyst surface after evacuation at 623 K prior 

to the admission of gas. On the other hand, formation of the other 

C-containing species, detected after the oxygen treatment, might be 

attributed to the reaction of oxygen with a carbon deposit on the 

catalyst surface. This deposit may be due to a dissociative chemisorp-

tion of C^^O^® and C^^O^^ during the exposure of ZnO to c'^o'^ and 

CHgOH prior to the oxygen treatment. This result also demonstrates the 

value of the oxygen treatment after each methanol decomposition experi

ment for removing possible carbon residues, and it was used consistently 

throughout this study. 

18 
Interaction of with 0 -enriched ZnO 

18 
The 0 -enriched ZnO was exposed to 6.3 Pa of gas at 623 K for a 

period of 1x10^ sec. At the end of the experiment, the decrease in PfHg) 

amounted to 8% of the initial pressure. This decrease in Hg pressure can 

be explained in two ways. First, might be consumed via the reduc

tion reaction 

"2(g) " Z"°(s) = ^ ^"(g) 

Zn, \ = Zn, \ (condensation on cold parts of /-q\ 
system) 13*' 

+ ZnO(g) = HO-Zn - O-H (39) 
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The second alternative is that ^2(9) being consumed via an adsorption 

process, i.e., 

+ ZnO^gj = H - Zn - OH (40) 

The absence of a Zn deposit and of a peak at •^ = 20 rules out 

the occurrence of the reduction reaction. 

Adsorption of on ZnO and its desorption have been repeatedly in

vestigated by many researchers. The identity and the number of surface 

species have been the subject of an extended polemic In the literature 

[74-76]. In early works [77, 78], two types were postulated, A and B. 

Type A was said to be a low temperature chemisorption which occurs up to 

423 K, and Type B is a high temperature one. Eischens e^ £l_- [74], who 

were the first to report on the IR of Hg adsorption on ZnO, indicated 

that at about 300 K there may be as many as four different types of 

hydrogen surface species. The same number of surface species was ob

served by Narvaez and Taylor [79] in the range 273 K to 673 K. Scholten 

and Van Montfoort [80] reported three types at room temperature: 

(a) reversible and active in IR, (b) reversible and inactive in IR, and 

(c) irreversible adsorption. On the other hand. Dent and Kokes [76, 81], 

Chang and Kokes [82], Chang e^ £l_. [83], and Dixon e^ a]^. [84] reported 

the existence of the following types: (a) type I reversible, occurring 

rapidly at room temperature, active in IR; (b) type 11 Irreversible, oc

curring at room temperature, inactive in IR; (c) type III reversible, 

occurring at 78 K, active in IR; and (d) type IV, a high temperature 

chemi sorption. 

One of the complicating factors in determining the number of the 
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hydrogen surface species is the fact that the so-called "high tempera

ture" chemisorption cannot be excluded at room temperature. In a recent 

temperature-programmed desorption study, Baranski and Galuszka [85] 

claimed the existence of six or seven types of hydrogen species on 

ZnO. Using the notation of Dent and Kokes [76], the reversible type 

occurring at room temperature (type I) is attributed to a dissociative 

chemisorption of Hg on ZnO pair sites giving bands at 1710 and 3500 

- ] 
cm , due to ZnH and ZnOH species respectively as was established by 

the work of Eischens et a_[_. [74]. According to Kokes and Dent [86], 

the hydrogen that gives rise to these bands is limited to 5 to 10% 

of the surface. Type I hydrogen was found to exchange readily with D^ 

gas [86, 87]. Recently Griffin and Yates [88] found that type I desorbs 

in two stages characterized by maxima in the TPD (temperature programmed 

desorption) spectra at 240 K and 300 K. A recent IR study [89] resulted 

in the assignment of broad bands near 3400 and 1475 cm ^ to dissociated 

H atoms bridged between neighboring oxygen and zinc ions, respectively. 

This is believed to be type II hydrogen species. Type III species is 

believed to be molecularly adsorbed hydrogen, which produces a band at 

4019 cm'^ [83]. 

With regard to the possible reduction of ZnO by Kubokawa [90] 

concluded that hydrogen desorption is reversible up to 673 K. The same 

conclusion was also arrived at by Garner [91]. On the other hand. Hart 

and Sebba [92] found that a reduction took place on ZnO, ZnO doped with 

LigO, and ZnO doped with GagO^ Hg pressures in the range 523 K 

to 593 K. The reduction was evidenced by Zn metal formation, darkening 
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of the adsorbent, and failure of the pressure versus time curve to 

flatten out to a constant value. 

In the present study, reduction of ZnO by did not occur under 

the experimental conditions used, and the catalyst pretreatment with 

Hg (as will be discussed later) did not affect the catalyst activity 

towards methanol decomposition. 

12 16 
Interaction of C0 with CL-treated ZnO 

12 î 6 18 
Several experiments of C 0 interaction with 0 -enriched ZnO were 

1 2 1 6  1 2 1 6 1 8  
carried out with the objective of detecting C Og and COO (if any). 

18 
The ZnO surface was f irst enriched by 0 by carrying out the oxygen ex-

1 3 1 8  1  1  ̂  
change reaction between C 0 and ZnO. Prior to admitting C'~0 , the 

18 16 
0 -enriched ZnO was cleaned with 0^ under conditions similar to those 

used for cleaning the catalyst after a CH^OH decomposition experiment. A 

typical result is shown in Figure 4, which reveals that no carbon dioxide 

was produced. In this figure, the signal corresponding to ^ = 44 repre-

12 16 
sents the residual amount of C 0^ in the system. The constancy of the 

^ = 44 peak throughout the experiment rules out the occurrence of the 

following reactions: 

'  "w -

= ^'(s) + HZ) 

= z"(g) c''°2(g) 

The absence of a peak at ^ = 46 (c^^o'^0^^) implies that a surface 
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reduction (similar to reaction 43) involving and ZnO^® did not 

occur. 

12 16 
However, Figure 4 indicates that C 0 does interact with ZnO via 

the following oxygen exchange reaction: 

c''0(g) + ha) 

This exchange reaction explains the decrease in the height of ^ = 28 peak 

and the increase in the height of ^ = 30 peak, as shown in Figure 4. 

12 16 
Figure 4 also shows chat about two-thirds of the consumed C 0 reappear 

12 18 
in the gas phase as C 0 The remainder is probably lost via adsorp

tion processes on the catalyst surface. 

A noteworthy observation is that even after several oj^ treatments 

at 623 K, the ZnO is stil l retaining 0^®. This might imply that c'^o'^ 

is probably more efficient than oj^ in enriching ZnO with o'®. 

The adsorption of CO on ZnO has been the subject of numerous in

vestigations. Garner [91] and Kubokawa [93] have pointed out that two 

types of chemisorption exist. The first type is a nonactivated, reversi

ble adsorption occurring at room temperature. The second type is a 

high temperature activated chemisorption, which partially desorbs as 

COg. Measurements of the interaction of CO with ZnO powders by infra

red spectroscopy have shown that the CO stretching frequency increases 

upon adsorption [94-98] contrary to its general behavior for organometal-

l ie compounds. A carbonate-like structure has been detected by IR 

measurements on ZnO [97-99]. 

Using UPS (ultraviolet photoelectron spectroscopy) and work function 
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measurements on (0001), (0001), (1010), and (1120) low-index surfaces 

of ZnO, Gay e^ &L' HOO] concluded that the low temperature ad

sorption occurs on zinc sites. Hotan [101] have also studied 

the CO adsorption on the nonpolar (lOlO) ZnO surface by means of 

electrical conductivity, TDS (temperature desorption spectroscopy), 

AES (Auger electron spectroscopy), EELS (electron energy loss spec

troscopy), and leed (low energy electron diffraction) techniques. They 

concluded that CO is irreversibly adsorbed even at room temperature. 

In conclusion, i t seems that the low temperature CO adsorption on ZnO 

occurs on zinc sites via the carbon end of the CO molecule with negli

gible TT-back donation from the metal to the ir* orbital of the CO mole

cule [100]. The high temperature adsorption is believed to occur on the 

oxide ions [91], which might account for the appearance of carbonate 

structures and the desorption of CO as COg. 

In the present study, no COg was detected during the interaction of 

CO with ZnO under conditions similar to those used in the kinetic study 

of CHgOH decomposition on ZnO. Besides the oxygen exchange between CO 

and ZnO, the present study indicates that some dissociative adsorption 

is occurring. This leads to the formation of a carbon layer, which is 

removable as CO and/or CO2 upon treating the catalyst with Og gas at 

about 623 K. 

18 
Decomposition of CH^OH over 0 -enriched ZnO 

10 1^ 
Since the interaction of both C 0 and CO with ZnO did not 

result in the formation of any COg under conditions similar to those 
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encountered in CH^OH decomposition, where CO^ is observed, CO^ must come 

via the decomposition of a surface species which results from the inter

action of CHjOH with ZnO. Formate ion, HCOO (ads.), is a species l ikely 

to exist on the ZnO surface with the extra oxygen coming from ZnO. For

mate resulting from the dissociation of HCOOH on ZnO [102] or from the 

coadsorption of and COg on ZnO [I03] yields CO and/or CO^ upon de

composition, suggesting that CO^ observed in CH^OH decomposition may re

sult from a formate intermediate. 

Several infrared spectroscopic studies on the adsorption of CH^OH on 

metal oxides confirmed the formation of a formate-like structure on an 

oxide surface. Greenler [104] identified three surface species from the 

adsorption of CH^OH on AlgOg: (a) weakly-bound layer of l iquid CH^OH re

movable by evacuation at 308 K; (b) surface methoxide species at 308 K to 

703 K-, and (c) a formate-like structure at 443 K to >673 K. The identifi

cations were confirmed with isotopic band shifts using CH^OD, CD^OH, and 

C^^HgOH. Similar observations were also reported by Kagel [105] for the 

adsorption of to normal alcohols on y-Al^O^, by Un land [106] for 

the decomposition of CH^OH on alkali metal x-type zeolites, and by 

Thornton and Harrison [107] during CH^OH decomposition on SnOg. However, 

the room temperature adsorption of CH^OH on ZnO resulted only in the for

mation of hydroxy 1 and methoxide species and no formate species were de

tected in the work of Nagao and Horimoto [IO8]. On the other hand. Herd 

e^ £j_. [66] and Ueno e^ [46] reported that they detected and studied 

the decomposition of both the methoxide and the formate species during 

the oxidation of CH^OH [66] and its decomposition on ZnO [46]. 
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To demonstrate that the formation of CO^ during CH^OH decomposition 

on ZnO requires the participation of an oxygen species from the ZnO 

18 
lattice, an experiment was carried out to enrich ZnO with 0 via the 

oxygen exchange reaction 

+ znojg) = + zn0|8) 

The above supposition, i.e., participation of ZnO to produce CO^ through 

CHgOH decomposition, is plausible if, during the course of CH^OH de-

18 
composition over the 0 -enriched ZnO, the gas phase species 

c'^o'^o'^ (•^ = 46), and c'^o'^ (^ = 30), together with the expected 

C^^Og^ (~ = 44), and C^^o'^ (•^ = 28) are obtained. To accomplish this, 

a series of CH^OH decomposition experiments was carried out over the 
1 o 

0 -enriched ZnO at 573 K with P(CH^OH) = 10.8 Pa. Each run lasted about 

1.2x10^ sec. and resulted in about 50% carbon conversion into carbon 

monoxide and carbon dioxide. A typical result is shown in Figure 5, 

which indicates that besides the usual oxides CO^ (^ = 44) and CO (^=28), 

new carbon oxides appeared. These new carbon oxides are C^^o'^0^® (^=46) 

and c'^0^® (^ = 30). These observations confirm the supposition that 

the formation of CO^ requires oxygen participation from the ZnO lattice, 

probably via a formate species. 

Another interesting observation evident in Figure 5 is the leveling 

off of CO^ despite the continuous evolution of CO. The same behavior was 

also exhibited by the decomposition of CO^OD on Zno'^ at 588 K as shown 

in Figure 6. In both cases, the maximum carbon conversion into CO^ 

amounted to about 20%. The amount of CO^ produced in each case was 
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estimated to be 1.9x10 mol. Assuming that the surface atom density 

14 -2  
of the oxide ions is SxiO atom cm , and knowing the total surface 

2 
area of the catalyst to be 3 m , the fraction of the surface oxygen 

removed as CO^ was estimated to be 0.08. 

Figures 5 and 6 also suggest that the formation of COg is a side 

reaction which levels off during the course of methanol decomposition 

2+ 
on ZnO. The leveling off could be due to a charge accumulation, Zn , 

on the catalyst surface due to consumption of the oxide ions via a 

surface reduction reaction. This charge accumulation inhibits further 

depletion of the oxide ions from the surface, and consequently the CO^ 

production levels off. A similar phenomenon was encountered by Hotan 

£t £]_. [101]. They found that the increase in the ZnO surface conduc

tivity, after admission of CO onto ZnO, attains a constant value within 

2 
about 3x10 sec. This was explained on the basis of the formation of a 

negatively-charged species, similar to a COg ion-molecule, accompanied 

by the formation of an oxygen vacancy. The slow diffusion of the vacancy 

at T < 500 K into the bulk inhibits further surface reduction. 

In the present study, the total initial rate of carbon oxide produc

tion, R(C0) + RfCOg), was taken as a measure of the total decomposition 

of the C-containing precursor. 

Evolution of CO^, during the course of CH^OH decomposition on ZnO 

and its derivatives, has been reported by Tsuchiya and Shiba [67], 

Uchida and Ogino [69], Cheng and Kung [109], and Ueno e;t aj_. [46]. 

The only reported explanation for CO^ formation is that of Ueno et al. 

[46]. They propose that CO2 is formed from the reaction of a gas phase 
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CHgOH molecule with a surface formate species. In the absence of gas 

phase CHgOH, the formate species decomposes solely into CO. 

To test the relevance of gas phase CH^OH, a decomposition experi

ment was interrupted twice by pumping out the gas phase over the 

catalyst as shown in Figure 7- The partial pressure of CO^, produced 

during CH^OH decomposition, responded to pumping, i.e., decreased during 

the pumping out of the gas phase (60 sec. each). The behavior of CO2 

pressure after the first pumping and its leveling off after the second 

pumping cycle indicate that CO^ formation is more l ikely to be occurring 

via a surface reaction. The time at which the CO^ pressure levels off 

(about 450 sec.) and the total amount produced in this experiment, as 

estimated from Figure 7 including amount pumped out, are essentially 

the same as those obtained from Figures 5 and 6. This result rules out 

the supposition that participation of gas phase CH^OH is necessary for 

COg evolution. With regard to the work of Ueno et al. [46], the amount 

of CO^ was always larger than that of CO with no leveling in CO^ produc

tion at an early stage of the CH^OH decomposition. 

Effect of oxygen treatment on ZnO activity and COg production 

in an attempt to trace any connection between the oxygen treatment 

and the catalyst activity towards CO^ production, a series of CD^OD de

composition experiments was carried out at 588 K and P(CD20D) = 10.8 Pa 

as indicated in Figure 8. The method of cleaning the catalyst surface 

after each decomposition experiment involved the admission of about 67 

Pa of Og gas onto the catalyst at 573 K. The catalyst temperature was 
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then raised to 623 K at a rate of 0.2 K sec At 623 K, the oxygen 

was pumped out and heating was continued up to 673 K. Outgassing at 

this temperature lasted for 1.8x10^ sec. The catalyst temperature was 

then lowered to 588 K. Before starting a run, the required amount of 

Og gas was admitted to the catalyst at the reaction temperature, 588 K. 

2 
Contact of 0^ with ZnO at this temperature lasted 6x10 sec.; after that, 

2 the Og gas was pumped out and pumping continued for another 6x10 sec. 

After 120 sec. of CD^OD decomposition on the oxygen-pretreated ZnO, the 

ratios CO^/CO, (C02 + C0)/D2, and the catalyst activity (expressed as 

~ 2  - 1  
total initial rate of Dg + CO+COg in mol m s ) were determined. The 

results are shown in Figure 8. This figure suggests that the extra 

oxygen pretreatment has no effect on the course of CD^OD decomposition. 

If COg is produced via reaction of CO, which results from methanol de

composition, with some residual oxygen left behind on the catalyst 

surface during the oxygen treatment, one should anticipate an increase 

in the ratio COg/CO as the pressure of Og is increased. This was not 

the case since the ratio remained constant as shown in Figure 8. 

On the basis of the results shown in Figures 3, 4, 5, 6, 7, and 8, 

it seems that a l ikely mechanism for CO^ evolution, during methanol de

composition on ZnO, involves a surface reduction via the formation of a 

formate species, which further decomposes into CO^ and/or CO. 

Kinetic Results 

isotope effect and apparent activation energies 

The fact that no CO and/or CO2 were produced initially up to T 2 

550 K, and the detection of CH2O below and above T= 550 K has led to the 
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conclusion that decomposition of CH^OH catalyzed by ZnO proceeds in 

two steps as follows: 

'^V"(g) ° ^ "2(g) ("5) 

C"2°(g) = "(g) + "2(g) '"ep 2) (46) 

The kinetics of the first step was studied at 453 K to 513 K, while the 

kinetics of both steps was studied at 563 K to 613 K. 

In an attempt to investigate the hydrogen isotope effect on the 

kinetics of methanol decomposition, the decomposition of CH^OH, CH^OD, 

and CD^OD was studied in both temperature ranges. The results cor

responding to the first step of decomposition are shown in Figure 9 and 

those of the second step are shown in Figure 10. 

As shown in Figure 9, the initial rates of decomposition of both 

CHgOH and CH^OD are the same and the apparent energy of activation for 

both methanols is E = 89.0 kJ mol However, CD^OD decomposes at a 

_ ]  
slower rate with an apparent energy of activation E' = 95.7 kJ mol 

These observations suggest that the cleavage of the oxygen-hydrogen bond 

in the methanol molecule is unlikely to be a rate-determining step. This 

also implies that the adsorption of methanol on the catalyst surface is 

not a rate-determining step. Since CD^OD decomposes at a slower rate, 

as compared to CH^OD, i t seems that cleavage of a carbon-hydrogen bond 

is a rate-determining step. 

In the case of CH^OD, the low temperature decomposition, step 1, 

resulted in the formation of HD, and D^. This is evidence against 
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the model proposing that the low temperature hydrogen comes solely from 

hydroxy 1 hydrogen. Participation of the methoxy group is required, 

probably via the step 

CHgO* + D.^ + 2'- = surface site). (4?) 

The hydrogen isotopic scrambling can result via the steps: 

"0(g) + 0. " + 02(g) (48) 

CHjOfg, * Hjjg) (49) 

It should be mentioned that ZnO is known to promote the isotopic mixing 

between and [84, 110]. Support for the nonparticipation of the 

methyl hydrogen in a direct isotopic exchange with HD and/or is 

deduced from the infrared studies on the adsorption of methanol on ZnO 

and other metals. The work of Yasumori £][• [62] indicated that 

admission of gas onto a ZnO surface covered with CH^O* and surface 

species resulted in the replacement of the species by D.^ and no iso

topic band shifts occurred for the methoxy hydrogen. Anderson and 

Kemball [63] have also shown that CH^OD is the only deuterated methanol 

obtained from the hydrogen exchange reaction between and CH^OH on ZnO 

and some other evaporated metal fi lms. 

In the high temperature range, where evolution of CO and CO^ is 

observable, the initial rate of step 2 is assumed to be the sum of the 

initial rates of CO and COg, as indicated in Figure 10. The results 

shown in this figure suggest that both CH^OH and CH^OD give the same 

initial rates of carbon oxide production, while CD^OD decomposes at a 
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slower rate. This implies that the formaldehyde hydrogen is totally 

originating from the methyl hydrogen in the parent methanol molecule. 

On this basis, both CH^OH and CH^OD should give the same formaldehyde, 

i.e., CH_0. The fact that CD OD decomposes into carbon oxides at a 

rate slower than that of CH^OH or CH^OD suggests that the rate-determin-

ing step of the formaldehyde decomposition might involve the cleavage 

of a hydrogen-carbon bond. 

Figure 10, which refers to the temperature effect on the initial 

rate of formation of CO and COg, shows a bend at about 590 K. The 

fact that the ordinate of Figure 10 does not correspond to a specific 

rate constant implies that the slope at any temperature gives only the 

apparent activation energy of the reaction. This quantity might include 

contributions from heats of adsorption, heats of desorption, and a true 

activation energy corresponding to the slowest elementary step in the 

reaction mechanism. The importance of any of these contributions can 

only be evaluated after deriving a rate law from a proposed mechanism. 

A similar break in the Arrhenius plot of In R(CO) versus y was 

reported by Dohse [41], and by Uchida and Ogino [69] at about 600 K. 

The same break in the Arrhenius plot was also reported at about 600 K 

in cases where the initial rate of increase in the total pressure was 

taken as a measure of methanol decomposition on catalysts containing 

ZnO [41, 44, 45» 65, 111, 112]. Dohse [41] attributed the break in the 

Arrhenius plot to the occurrence of the consecutive steps 

chgoh chgo + ^ co + zh^ 
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Wicke and Brotz [111] interpreted the lowering of the apparent activa

tion energy as a transition from the chemical to the strong-pore dif

fusion regime within the catalyst. Fuderer-Luetic and Sviben [45] 

attributed the variation in the activation energy, revealed on undoped 

and doped ZnO, to either a change in semi conductivity of the catalysts 

or a change in the controlling step of the overall methanol decomposi

tion reaction. Weneke and Heise [112], who studied the methanol de

composition on ZnO-Cr^Og mixed oxides, attributed the break to the 

diffusion of CH^O formed into the catalyst bed. On the other hand, 

Morrel 1 i  et [65], who studied the methanol decomposition on ZnO 

catalysts compacted under different pressures, concluded that the varia

tion in the activation energy with increasing reaction temperature is 

caused by a change either in the catalyst properties or in the reaction 

mechanism. They also remarked that diffusion effects may occur, too, 

contributing to the lowering of the activation energy when the particle 

size is high enough. A comparison between the values of the apparent 

energies of activation found in this work and those reported in the 

literature is shown in Table 1. 

From Table 1, i t seems that only the values reported by Dohse [41] 

are in good agreement with those of the present study. Dohse's work 

involved decomposition of CH^OH fi lms on ZnO, a condition close to the 

low pressure of CH^OH used in this study as compared to the high pres

sures used by other researchers. It should be pointed out that a fine 

powder sample of ZnO was used in the present study with an average 

2 
particle diameter = 4x10 nm. 
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Table 1. Values of the apparent energies of activation corresponding 
E] E2 

to the scheme CH^OH -> CHgO + Hg ^ CO + 2H2 

Catalyst 
— ] 

Ej/kJ mol Eg/kJ mol ^ Reference 

None 284.5 186.2* 59, 113 
ZnO 94.1 146.4 41 
ZnO 102.5 184.1 44 
ZnO 115.1 255.4 45 
ZnO/Cr203 , '80 125.1 42 
ZnO I72-322G - - 64 
ZnO 89.0 127.1c this work 

^Value obtained from homogeneous decomposition of CHgO. 

^Range corresponds to four catalysts compacted under different 
pressures. 

' 'Value corresponds to the range 563 K to 590 K in Figure 10. 

Comparison between decomposition and uptake 
of CH^OH and CH^O 

To supplement the proposed stepwise decomposition scheme of methanol, 

the catalytic decomposition of CH^O on ZnO was compared with that of 

CHgOH on the same batch of the catalyst at 500 K. The results are shown 

in Figure 11. From this figure, it is obvious that the initial rate of 

CHgOH decomposition is almost ten times that of CHgO. For example, at 

P(CH^OH) = pCCH^O) = 5 Pa, the ratio 

^ 1.4%10"3 Pa s"T ^ Q 2 
R(H2,m) 0.66x10"^ Pa s~' 

where R(H„,f) = initial rate of CH„0 decomposition and R(H„,m) = initial 

rate of CH^OH decomposition. This result f its well with the observation 
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Figure 11. Comparison between the initial rates of decomposition of CH,OH and CH^O over ZnO. 
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that, during CH^OH decomposition in the low temperature range, no carbon 

oxides were detected up to 550 K during the time in which about 15% of 

the total methanol hydrogen was being produced. 

An estimate of the initial uptake of both CH^O and CH^OH by ZnO 

at 500 K is shown in Figure 12. In this figure, the abscissa, P(calc.), 

represents the initial pressure of CH^O or CH^OH over the catalyst at 

the moment vapor was admitted from the manifold to the catalyst vessel. 

P(calc.) was determined from knowledge of the expansion factor assuming 

no adsorption by the catalyst. The ordinate of Figure 12 represents 

-2 -7 -2 
the initial uptake of ZnO = F-AP mol m , where F = 2.42x10 mol m 

Pa '  at 500 K, and AP = [P(calc.)-P^] Pa; P^ was determined by extrapo

lating the total pressure over the catalyst to zero time reaction, it 

should be emphasized that Figure 12 does not represent an actual isotherm. 

However, the figure does imply that CH^OH adsorption is relatively 

faster than that of CH^O. For example, at P(calc.) = P(CH^OH) = 

PfCHgO) = 13 Pa, one finds from the least-squares lines in Figure 12 

that 

(A,f) 1.08 mol m ^ 

where (A,f) = uptake of CHgO and (A,m) represents the corresponding value 

for CH^OH. The difference in the uptake might be attributed to a dif

ference in the ratio P(calc.)/P^, where P^ = saturation vapor pressure 

of CHgOH or CHgO. Since the boiling point of = 252 K and that of 

CHgOH = 338 K, the ratio P(calc.)/Pg is much higher for CH^OH than for 
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CH^O at a particular adsorption temperature. Consequently, the van der 

Waal s attraction of the adsorbent is greater for CH^OH than for CHgO. 

Van der Waals interaction energy tends to "track" condensation energy. 

The decomposition of CHgO on ZnO at 500 K was found to produce 

and CO in a 1:1 ratio and no CO^ was detected. The significance of this 

result with regard to the problem of CO^ concurrent evolution with CO 

at T > 550 K, during CH^OH decomposition, is to rule out the possibility 

of any surface reduction that might be caused by the generated CO. 

Although no spectroscopic studies have been reported on the adsorption 

of CHgO by ZnO, formation of formate species has been reported by Unland 

[106] after absorbing CHgO on alkali metal x-type zeolites. Even if a 

formate species is being generated during CH^O decomposition on ZnO at 

500 K, evolution of CO^ at this temperature, via formate decomposition, 

might not be significant due to the stability of formate species. 

Ueno et £l_. [46] reported that the formate species decomposes more 

slowly than methoxy species during CH^OH decomposition on ZnO. The 

formate species has been reported to withstand temperatures as high as 

700 K [104-106]. 

Effect of P(CH^OH). P(Ho). P(C0). and P(C0,) 
on CH^OH decompos it ion 

Since most of the previous studies on the kinetics of the catalytic 

decomposition of CH^OH on ZnO have been carried out over a narrow range 

of temperature and pressure [41-46, 64, 65], a major goal of this work 

was to study the decomposition kinetics over a wide range of temperature 

and pressure. Contrary to what most researchers adopted, the initial 
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rates were obtained directly from the variation in the partial pressure 

of a particular product as a function of time. In most cases, the 

initial rates were determined from the amount of the corresponding 

product produced during the first 120 sec. of reaction. 

The low temperature CH^OH decomposition, where no carbon oxides were 

formed, was studied by monitoring the evolution at 500 K with the 

initial CH^OH pressure ranging from 2 to 31 Pa. The dependence of the 

initial rate of hydrogen production, RfHg), on the initial CH^OH pres

sure, PfCHgOH), was found to follow the expression 

[PfCHgOHj/RfH^)]^ = a + b PfCHgOH) (50) 

The f it of the low temperature data to Equation 50 is shown in Figure 13» 

where the line in the figure represents the least-squares f it. The 

values of the constants a and b were deduced from the intercept and the 

slope of the least-squares line, respectively. These values are: 

intercept = a = 12.4 s^ and slope = b = 1.7 Pa A comparison be

tween the calculated RfHg) values, predicted by Equation 50, and the 

experimental initial rates is presented in Figure 14 in a log RfHg) 

versus log PfCHgOH) graph. The agreement between the calculated initial 

rates and the experimentally found rates is excellent. 

The high temperature CH^OH decomposition, where and carbon oxides 

are being produced, was studied at 593 K with the initial CH^OH pressure 

ranging from 3 to 130 Pa. The initial rates were determined from the 

amount of product produced in 60 sec. The initial rate of evolution 

of carbon oxides, R^, was obtained by summing the initial rates of CO 



www.manaraa.com

68 

T«500 K 
80 

70 

60 

50 

40 

30-

20 

22 26 30 10 14 18 2 6 
pch3oh 

Po 

Figure 13. Fit of the low temperature CH^OH decomposition data to the 
equation : 

IP(CH30H)/R(H2)]^ = a + b PfCHgOH) 
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and CO^ production. On the other hand, the initial rate of hydrogen 

production, RfHg), corresponding to the first step of CH^OH decomposi

tion was obtained by subtracting from the initial rate of total 

hydrogen production. The dependence of and R(H2) on PfCH^OH) was 

found to satisfy the following equations: 

[P(CH20H)/R(H2)]^ = a' + b' PfCH^OH) (51) 

[P(CH^0H/R^]^ = a" + b" (P(CH^OH) (52) 

The plots of these two equations for the decomposition of CH^OH at 593 K 

are shown in Figure 15. The lines in the figure represent the f it of the 

data to the least-squares method. The values of the constants a', a", 

b', and b" were determined from the intercept and slope of the correspond

ît 
ing least-squares line. The values obtained are: a' = 6.44 s , 

b' = 0.128 s^ Pa \  a" = 10.5 s^, and b" = 0.55 s^ Pa A comparison 

between the calculated initial rates of production R^Hg), predicted 

by Equation 51, and experimental rates is shown in Figure 16 in log 

R^Hg) versus log F^CH^OH) form. Using Equation 52, a similar compari

son is also presented in Figure 17 for log versus log P(CHjOH). In 

this case. Equation 52 overestimates the calculated R^ values at 

PfCHgOH) i  5 Pa. For example, at PtCH^OH) = 5 Pa, the calculated value 

- 2  - 1  
of R^ is 2.85x10 Pa s , while the experimental value of R^ is 

1.86x10 ^ Pa s Hence, the ratio R^(calc.)/R^(expt,) = 1.5. This 

discrepancy reflects the lesser weight given the low pressure region 

in setting parameters in Equation 52, since about 75% of the data points 
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in Figure 17 have their log PtCHgOH) values > 1. However, i t is found 

that at PfCHgOH) < 5 Pa, the values are given by the equation 

= 3.61x10"^ P(CH^OH) Pa s~^ (53) 

Equation 53 reflects a first-order dependence and might be considered as 

the low pressure limiting case of Equation 52. For these reasons, the 

calculated R^ values shown in Figure 17 at P(CH^OH) < 10 Pa were computed 

as the average of R^ values predicted by Equation 52 and those obtained 

from the first-order dependence given by Equation 53. This correction 

becomes insignificant as PfCH^OH) approaches the value 10 Pa from below. 

For example, at P(CHjGH) = 10 Pa, Equation 52 gives R^ = 3.91x10 ^ Pa 

- 1  - 2  - 1  
s , and Equation 53 gives R = 3.61x10 Pas ; the average of these two 

- 2 - 1  
values is 3.76x10 Pa s , which is 4% less than the value of R^ pre

dicted by Equation 52. However, the calculated R^ values at PfCHgOH) > 

10 Pa, in Figure 17, were obtained from Equation 52. 

As indicated in Figure 15, the CH^OH decomposition kinetics at 593 K 

was studied up to PCCH^OH) = 130 Pa. Despite the presence of a cold trap 

at 195 K, between the leak valve and the mass spectrometer, the CH^OH 

peaks started to appear in the mass spectrum at P(CH^OH) > 130 Pa, which 

interfered with CO analysis. Due to this limitation, decomposition of 

CHgOH at P(CH^OH) > 130 Pa was not pursued. However, the fact that the 

initial CH^OH pressure was varied by two orders of magnitude assures 

that significant changes have been made in the concentration of the 

surface species, which participate in the decomposition reaction. 

The effects of P(H2), P(C0), and PfCOg) on the decomposition 
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kinetics of CH^OH were also examined. Due to experimental l imitations, 

i.e., the hydrogen produced has to be monitored over a large background 

of Hg, the effect of PtHg) on the low temperature decomposition of CH^OH 

was investigated by pretreating the catalyst with the required amount 

2 
of gas at the reaction temperture for a period of 3x10 sec. Pumping 

2 
out of the Hg gas was then started. After 3x10 sec., the pumps were 

isolated and the required amount of the CH^OH vapor was admitted to the 

catalyst. The effect of 0 to 21 Pa of Hg pretreatment on the decomposi

tion of 9.8 Pa CH^OH at 500 K is shown in Figure 18. This figure indi

cates that the hydrogen pretreatment does not affect the decomposition 

of CH^OH. On the other hand, the effect of PfHg) on the initial rate 

of formation of CO, and CO^ at 593 K was investigated by concurrent 

admission of the required amount of gas and 4.6 Pa of CH^OH. The 

results shown in Figure 19 suggest that the presence of gas does not 

affect the course of CH^OH decomposition. 

In a similar manner, the effects of P(CO), and PfCOg) on the de

composition of CHgOH were also examined at 563 K. The results are shown 

in Figure 20. in this case, the partial pressures of Hg and PfCO + COg) 

were determined after 5.2x10^ sec. (about 26% carbon conversion). This 

was done to avoid errors associated with the determination of the initial 

rate of formation of carbon oxides, which might result due to the presence 

of CO or COg, in a relatively large quantity, before the commencement of 

the CHgOH decomposition. Figure 20 indicates that neither CO nor COg 

affects the CH^OH decomposition. 

The results presented in Figures 19 and 20 lead to the conclusion 
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that the init ial rate of CH^OH decomposition over ZnO is zero-order in 

PfHg), P(CO), and PfCOg) over the pressure range indicated in* these two 

figures. If Hg, CO, and COg adsorb strongly on sites used for CH^OH 

decomposition, the init ial rate of CH^OH decomposition on ZnO wil l have 

to decrease as the partial pressure of H^, CO, or CO^ is increased in 

the init ial mixture (feed). The observation that the init ial rate of 

CHgOH decomposition was not retarded by the presence of any of these 

gases suggests that the fraction of ZnO surface occupied by any of these 

gases is negligible. 

The apparent activation energy of CH^OH decomposition on ZnO in 

the temperature range 453 K to 513 K was found to be 89.0 kJ mol ^ (see 

Figure 9). On the other hand, Baranski and Galuszka [85] reported a 

- ] 

value of about 22 kJ mol for the activation energy of desorption on 

a powder sample of ZnO at T 3 550 K. Comparison of these two activation 

energies leads to the conclusion that hydrogen desorption is unlikely to 

be a rate-determining step during the ZnO-catalyzed decomposition of 

CHgOH. Hotan e^ £]_. [101] have indicated that CO^ completely desorbs 

from the (1010) ZnO surface at T < 500 K. The desorption rate of CO^ 

was found to peak at about 300 K, with the activation energy of desorp

tion being 90 ± 10 kJ mol ^. They also found that CO desorbs as CO^ in 

about the same temperature range and with almost the same activation 

energy of desorption as that of COg. Runge and Gopel [114] have also 

reported TDS data on the desorption of CO^ from a powder sample of ZnO. 

Most of COg was found to desorb at 380 K. 

In Figure 10, at T < 588 K, the apparent activation energy of total 
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carbon monoxide production (CO + CO^) from CH^OH is 127.1 kJ mol \  

Comparison of this value with those reported in the aforementioned TDS 

studies of Hotan et al. [101], indicates that desorption of CO and/or 

COg is not a rate-determining step during CH^OH decomposition over ZnO. 

A zero-order dependence was also reported by Dandy [43] for the 

effects of , CO, COg, CHgO, H^O, and CH^ on the high pressure decom

position of CHgOH [P(CH^OH) > 1.3x10^ Pa] on ZnO, Li20"doped ZnO, and 

AlgOg-doped ZnO. 

Mechanistic Considerations 

In this section, a mechanism wil l be developed to describe the 

kinetics of methanol decomposition on ZnO, and a rate law wil l be 

derived. The consistency of the mechanism with the l iterature informa

tion on methanol adsorption on ZnO and its implications with regard to 

the findings of this work wil l be discussed. 

Consider the following sequence of reactions: 

kl 
CHgOH^g) + * t CHgOH* (step 1) (54) 

k2 
CH-OH^ + -^ t  CH-0., + (step 2) (55) 

j j " 

k3 
CHgO* + H* CHgO* + + V: (step 3) (56) 

CHgO* t  C"2°(g) " (step 4) (57) 
k-4 

kg 
CHgO^ + * t  CHOL + (step 5) (58) 

k_ 5  

kr 
CHO* + + CO(g) + 2a (step 6) (59) 
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where the star, *, represents an unoccupied surface site on ZnO. I t is 

obvious that formation of CO^ is ignored in this scheme. However, to 

account for the init ial formation of COg, step 6 in the mechanism should 

be modified. This can be done by assuming that the same species indi

cated in step 6 can undergo two different reactions. One reaction in

volves surface reduction and leads to the formation of COg. The other 

reaction is simply a bimolecular surface reaction giving CO and as 

indicated by step 6 in the mechanism. The occurrence of these two 

reactions can be depicted as follows: 

H 

+ CO^gj + Zn Zn (step 6A) (60) 

H 

Since the catalyst surface was always treated with 0^ gas prior to a 

CHgOH decomposition experiment, step 6B is favored at the init ial stages 

of CHjOH decomposition and becomes less important at later stages, 

probably due to unavailabil ity of oxygen and/or inhibition by charge 

accumulation. 

On the basis of the occurrence of steps 6A and 6B, as indicated 

above, the total init ial rate of production of carbon oxides, R^, wil l 
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be given as fol lows: 

= R(CO) + RfCOg) 

- (i<6 + kàltcho.llh*] 

(62) 

Later in this discussion the occurrence of steps 6A and 6B wil l be 

referred to as step 6 with an apparent rate constant = l<^. 

in the low temperature range, i .e., when no carbon oxides are being 

produced, methanol decomposes into and CHgO and the rate-determining 

step is postulated to be step 3- In the high temperature region, where 

further decomposition occurs, i .e., both methanol and formaldehyde 

decompose concurrently, the total CH^OH decomposition is governed by 

step 6. At low temperatures, where = 0, the init ial rate of 

production is given by the following equation: 

dpfhg) 
— k g t C H g O a l t H * ]  =  R f H z )  ( 6 3 )  

In this case the site-balance equation is given as follows: 

1 = [*] + [CHgOH*] + [CHgO*] + [H,J + [CH^O^]+ [0,J (64) 

where [0.^3 represents the fractional coverage of oxygen surface species 

( if any) irreversibly held on the catalyst surface after each oxygen 

treatment. The fractional coverage of each surface species is related 

to the unoccupied fraction, [*], as follows: 

[CHnOH^] = K,P^[*] (65) 
5 " I m 
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[CH^O.,] = KfPf [,v] (66) 

where = P(CH^OH), P^ = PCcH^O), and = k ^/k^. Neglecting re-

adsorption of Hg as H.,., one can equate to such that 

[CHgO*] = [H,J = (K2K,PJ^[A] (67) 

Substituting Equations 65, 66, and 67 into Equation 64, the site-

balance equation becomes 

1 = ['•] + k,p^ [>v] + zck^k^pj^ ['v] + kfpf[*] + [0,j (68) 

The fact that the oxygen pretreatment did not affect the course of CH^OH 

decomposition suggests that the term [0.^] can be neglected. In this 

case, Equation 68 reduces to 

! = [*] + k,p^[*] + 2(k2k,pj^[:v] + kfpf[a] (69) 

solving for [*], the result is 

[*] = [1 + kjp^ + + kfp^yl (70) 

Using this result and Equation 67, then substituting into Equation 63 

gives the result: 

k,k,k.,pm 
«(h.)- 3_2_lm (71) 

(' + + 2(k2k,fm) + vf' 

Since the uptake of CHgO by ZnO was found to be small compared to that 

of CHgOH, one can neglect the term K^P^ in the denominator of Equation 

71. This is more l ikely to be the case when one considers init ial rates 
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at low conversion. Furthermore, i f  i t is assumed that 1 + K,P >> 

ZfKgKiP^) ,  Equation 71 reduces into the following form: 

m 

ktk_k,p_ 
R(H ) = ^ ^ ^ 2 (72) 

[1 .  Yf 

Equation 72 can be transformed into the following form: 

^ + (kgkgkj) (73) 

this form is equivalent to the empirical form found experimentally 

(Equation 50) which has the form 

= a + k fm 

Comparison of this equation with Equation 73 gives: 

a = (kgKgK^) ^ (74) 

b = K^Ck^K^Kj)"^ (75) 

i  - k, (76) 

Values of and k^Kg at 500 K and 593 K wil l be given later. 

In the high temperature range, where evolution of carbon oxides is 

noticeable, the init ial rates of formation of hydrogen and carbon 

oxides are given as follows: 

dP^CO) ^ dP^CO^) ^ + R(co^) = (77) 

dP(H2,tot.) i-dP(CO) dP(C02)^ _ dP(H2) ^ 
3t— " dt •*" —31—^ —ar- i/B/ 
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Considering init ial rates, Equation 78 becomes 

rfhg.tot.) - = rch^) (79) 

where R^Hg) represents the init ial rate of production accompanying 

the formation of CH^O (step 3 in the mechanism), R^Hg.tot.) represents 

the init ial rate of total produced via CH^OH and CHgO decomposition, 

and R^ designates the init ial rate of production of carbon oxides. 

At temperatures where further decomposition of CH2O occurs, i .e., 

reaction 59 takes place (step 6 in the mechanism), the dependence of 

R^ on the init ial methanol pressure, P^, car be derived from the given 

mechanism as follows: Assuming that the only appreciable surface 

species are CH^OH^ and CH^O.,., then at high temperatures, the site-

balance equation wil l be given as follows: 

1 = [a] + [chgoh*] + [chgo*] (80) 

At high temperatures, formaldehyde formed in step 3 either goes off as 

gas or decomposes according to steps 5 and 6 in the mechanism. At 

steady state, the fractional coverage of CH^O.,, satisfies the equation: 

«v...... • 

or neglecting P^, Equation 81 reduces to 

k,K K P [,v]2 
[chlo^]_ _ = r..1 (82) 

z^a^s.s. ~ k^rnçw 

From Equation 65, [CH^OH^.] is given as follows: 

[ch3ohj = k|p„[i.] 
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Substitution of Equations 82 and 81 into Equation 80 yields: 

k K K P 

'  = 1*1 + + k^+iki^rprr- <83) 

Equation 83 can be transformed into the form 

+ + I 'Uk^+K.k^P^-k^Kj)- k^ - 0 (84) 

which has the solution 

p . ,  -  ' ( k ^ + k ,  k t p m - k ; k 5 ) 2 + 4 k 4  ( k ^ y k ,  k j k ^ p ^ ^ k j k ,  k ^ p j  f  

zlk.kj + k.kjk^p^ + kjk.k^p^) 

Consider the special case k = 0 (low temperature CH,OH decomposition), 
c J 

for which Equation 85 reduces to 

(86) 
^vl'^2^ k;(l+k,p^)2 

ak kjk2p^ , 
If —7^ To- « 1 and the approximation (l+x) - 1 = ^ is applied, 

kl^ ( 1+K| Pm) 

Equation 86 wil l reduce into the form 

[*] , + k.p (87) 
1 m 

which was arrived at in deriving Equation 72 for the low temperature 

decomposition of CH^OH. Equation 87 can be obtained by examining the 

quadratic equation: 

ax^ + bx - c = 0 (88) 

2 c 
the special case ax << bx~c gives x = p. Applying the same argument to 

Equation 86, where c = and b = k^(l + P^) gives the result shown in 
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Equation 87.  However, for the general case where k > 0, use of the 
c 

2 
condition ax << bx~c reduces Equation 85 into the following: 

° + w - k/s' " tttyvin^ (83) 

Equation 62 can be rewritten in the form 

= k^[cho,j[kj 

= ;  (step 5 is assumed at equil ibrium) 

k K k K K P [*]3 
= k^ + k K [*]— ' (Equation 82 is used) 

k K k K K P 
5 ; (Equation 89 is used) 

t(k;k;k,k,k,)/(, . k^kg/k^y!) 

Similarly the init ial rate of production of according to step 3 in 

the mechanism is given as follows: 

rfhg) = = kgkgtchgoh^lla] = kgkgkip^l*]^ 

[ltk|py(l-k^k5/k^)]2 

Equations 91 and 90 predict that the ratio R(H2)/R^ should satisfy the 

equation :  

R(H ) k. 
= (92) 
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which predicts a l inear relationship between R(H2)/R^ and at a 

constant temperature. The slope of the l ine given by Equation 92 is 

(k^Kj/k^K^) and the intercept is (k^/k^Kg). 

Figure 21 shows a plot of Equation 32.  The l ine in the figure 

represents the least-squares f i t. Values of and RfHg) were calculated 

from the slope and intercept of the corresponding l ine in Figure 15. The 

following information was obtained from Figure 21: 

(1) Slope = 7.11x10 ^ Pa '  = (k^K^/k^K^). 

(2) Intercept = 4.54 = (k^/k^K^). 

Intlrcept '  ° P*'' '  

Equation 91 gives the init ial rate of production via step 3 In 

the mechanism with concurrent evolution of carbon oxides. This equation 

can be rearranged in the form 

Equation 93 gives a relationship between RfHg) and P^ similar to the 

experimental result shown in Figure 15 for RfH^) data. The ratio 

1̂ 1 
( l  - k K^/kïjT Equation 93 can be obtained from the RtHg) data shown 

in Figure 15 as follows: 

(" F'sure 15: i„t lrcept ° TIT ° '•99*'°"' Pa''-

(2) From Equation 33: in^^ept ° (l - k^/ki,) " 1-99x10'^ Pa''. 
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Notice the excellent agreement between the two values of -r;—:—Tr~7,—r • 
( I ~ c 5' 4) 

The value 1.99x10 ^ Pa ^ is obtained from RCH^) data, while the value 

2.01x10 ^ Pa ^ is obtained from RfHg) and data shown in Figure 15. 

With regard to the relationship between R^ and P^, Equation 90 

does not give exactly the empirical relationship depicted in Figure I5. 

The denominator of Equation 90 needs further discussion. To do this, 

some numerical information must be provided for the constants appearing 

in Equation 90. This information is given in Table 2. 

Table 2. Values of the constants appearing in Equation 90 at 593 K 

Constant Value Un i ts Source 

k^Kg/k^ 

kl 

2.20x10'^ 

1.57x10'^ 

dimens ion less 

Pa"' 

Eq. 

Eq. 

92 & Fig. 

92 6 Fig. 

21 

21 

K,/(1- k^Kg/k^) 2.00x10"^ 

9.46x10"' 

Pa"' 

Pa s"' 

Eq. 
Eq. 

Eqs 

92 6 Fig. 
93 6 Fig. 

.  92, 93 & 

21 or 
15 

Figs. 15, 21 

Substituting the numerical values shown in Table 2 into Equation 90 

yields the following expression for at 593 K: 

5.37x10"^ ,  
R 5 = z Pa s (94) 
^ (1+2.00x10 ^ P (1 + 1.57x10 ^ P ) 

m m 

The denominator of Equation 94 can be approximated as a polynomial of 

the form (1+ax)". The given mechanism predicts that the value of n 

should be 3. On the other hand, the R^ data shown in Figure 15 indicate 
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a good f i t for the case where n = 2 in the denominator of Equation 94. 

Table 3 shows a comparison between the empirical values (obtained 

from least-squares l ine in Figure 15) and those obtained by Equation Sh. 

The case (R^, n=2) corresponds to an equation similar to Equation Sh 

with the term (1 + 1.57x10 ^ P^) being dropped out from the denominator. 

The case (R^, n=3) corresponds to Equation Sk with the full expression 

of the denominator being retained. 

Table 3- Comparison between empirical and calculated R^ values at 593 K 

fm 
Pa 

102.(Rc,n=2) 10^.(R^,n=3) 10^.(R^.emp. fm 
Pa 

Pa s"^ Pa s"' Pa s-1 

10 3.72 3.22 3.91 
30 6.27 4.26 4.12 
50 6.68 3.74 3.46 
70 6.49 3.09 2.92 
90 6.13 2.54 2.50 

120 5.53 1.93 2.05 

It is obvious from Table 3 that the case (R^,n=3) predicts rates 

closer to the empirical ones than the case (R^,n=2). However, both 

cases give values of the same order of magnitude and the choice 

between the two cases is a matter of accuracy in getting the R^ values. 

Table 4 summarizes the values of the constants appearing in the 

expressions of RfH^) and R^. Notice that RfHg) data were obtained at 

two different temperatures, 500 K and 593 K, while R^ data were ob

tained only at 593 K. 
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Table 4. Values of the constants in RCH^) and expressions 

Tempera-
ture/K 

Constant Value Uni ts Remarks 

500 k, I.37xl0"^ Pa"' low temp. RfHg) data 

500 KJKZ 4.75xI0"^ Pa s"' low temp. RfHg) data 

593 1.57x10"^ Pa"' high temp. RfH^) 6 R^ data 

593 9.46X10'^ Pa s"' high temp. R(Hg) £ R^ data 

593 kc *5/^4 2.20x10"' dimens ion less high temp. RCH^) & R^ data 

The break in the Arrhenius plot of In versus 1/T, shown in 

Figure 10, is unlikely to be caused by a build-up of a surface species 

such as CHgO^, or CHO^. I f the catalyst surface is being poisoned by 

the build-up of a certain intermediate, the low temperature part of 

the In R^ versus 1/T graph should be f latter than the high temperature 

part. Since the opposite of this was observed, a more l ikely explana

tion for the break in Figure 10 is the decrease in the equil ibrium 

constants ,  K^, and Kg when the reaction temperature is increased. 

The temperature effect on Kj is shown in Table 4. The effect of the 

product Kg on the init ial rate, measured at different temperatures, 

is more pronounced in the numerator of a rate equation (see Equations 

90 and 91). 

In conclusion, the proposed mechanism resulted in the development 

of three rate laws. The f irst rate law relates the init ial rate of 

production, RfHg), to P(CH^OH) at low temperatures and is given by 
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Equation 72. The second rate law relates the init ial rate of pro

duction, RfHg), to PtCHgOH) at higher temperatures as given by Equation 

91. The third rate law corresponds to the init ial rate of production 

of carbon oxides, R^, and is given by Equation 90. The low temperature 

and the high temperature RfHg) expressions have the same functional 

form as the empirical ones given by Equations 50 and 51, respectively. 

On the other hand, the expression for R^ is somewhat different from the 

empirical form given by Equation 52. The expression for R^ derived 

from the mechanism has the extra term (1 + K,P ) in its denominator. 
I  m 

The mechanism proposes that at low temperatures the ZnO surface 

sites are either bare or occupied by adsorbed methanol, i .e., CH^OH* 

species with coverages of other surface species being negligible. At 

higher temperatures, where further CH^O decomposition occurs, the 

mechanism proposes that the significant coverage is that of the molecular 

species CH^OH* and CH^O*. The bonding of CH^OH* to the ZnO surface can 

be assumed to occur via a coordinative adsorption on a zinc ion through 

the oxygen of the CH^OH molecule, or the CH^OH molecule can be coordi

nated to an anion vacancy. Yet another possibil ity for molecular adsorp

tion involves hydrogen bonding between the methanol oxygen and the 

hydrogen of a surface hydroxy! group. Residual hydroxy! groups on the 

ZnO surface can be detected even after treating the ZnO surface with 

2.3x10^ Pa of Og gas for two hours at 730 K [115]. i t  should be pointed 

out that most of the surface infrared studies concerning the adsorption 

of CHgOH on metal oxides were carried out after pumping out the gas 

phase over the adsorbent; consequently, the molecularly adsorbed CH^OH 
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might be completely lost during the evacuation step, or its surface 

coverage is diminished to a level below the detection l imit of the IR 

measurement. In the present study, the molecularly adsorbed state is 

thought of as a precursor state for further dissociative adsorption as 

indicated in step 2 in the mechanism. However, the IR study of Dalla 

Lana and Deo [116] on the adsorption of l-propanol on alumina has 

indicated the existence of a molecularly adsorbed species up to 443 K. 

A similar observation has also been reported by Knozinger and Stubner 

[117] for the adsorption of isobutyl alcohol on alumina. 

With regard to the molecular adsorption of CHgO, i .e., the surface 

species CHgO*, i t  is quite possible that the surface bond involves a 

zinc ion and the oxygen of CHgO. A formate-like structure is also 

possible, where the carbon and the oxygen of the carbonyl group are 

being attached to an oxide ion and a zinc ion, respectively. 

The methoxide and formate species have always been observed in all 

the IR studies of CH^OH adsorption on metal oxides [46, 66, 104-108]. 

The thermodynamic feasibil ity of the formation of such species on metal 

surfaces has been recently given by Benziger and Madix [118]. 

With regard to the reversibil ity of steps 1 and 2 in the mechanism, 

few experiments were carried out to establish the reversibil ity of these 

steps by coadsorbing and CH^OH on ZnO. No CH^OD was detected. 

il 
Probably high pressures, in the order of 1x10 Pa, are required to 

shift the equil ibria of steps 1 and 2 to the left. However, the 

reversible adsorption of methanol on ZnO was deduced from the work of 

Anderson and Kamball [63]. Koga e^ aj_. [ II5] have established the 
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reversibil ity of a step similar to step 2 for the adsorption of iso-

propyl alcohol on ZnO. This was done by treating the alcohol-covered 

if 
surface with about 2x10 Pa of gas. Presumably high pressures of 

Dg gas were used in the work of Yasumori e^ a_j_. [62] and that of 

Anderson and Kemball [63], who reported on the reversibil ity of CH^OH 

adsorption on metals. However, pressures higher than 1.3x10^ Pa were 

not attainable in the present work. Similarly the reversibil ity of 

step 5 in the mechanism was not established and no l i terature informa

tion is available on this subject. 

The mechanism accounts for the hydrogen isotope results. Step 3 

in the mechanism involves the cleavage of a C-H bond and predicts that 

the low temperature decomposition of methanol, steps 1-4, should follow 

the sequence: R^(CH^OH) = R^fCHgOD) > R^fCD^OD), where Rj^ = init ial rate 

of hydrogen production. Similarly, step 6 (or 6A and 6B) involves the 

cleavage of a C-H bond and predicts that RgfCHgO) > R^fCDgO). These 

predictions are in accordance with the experimental f indings of this 

study. 

Finally, i t  should be pointed out that no such detailed mechanism, 

supplemented with ample experimental evidence, has ever been reported 

before on the decomposition of methanol on zinc oxide. 
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SUGGESTIONS FOR FUTURE RESEARCH 

This research has provided strong evidence for the intermediate 

formation of CHgO in the decomposition of CH^OH. At lower temperatures 

(453 K - 513 K), the formaldehyde principally desorbs, while at higher 

temperatures (563 K - 613 K), i t  decomposes to CO and H^. Consequently, 

the methanol synthesis might be visualized as follows: 

step 1 step 2 

"W " '"2(g) — "2(g) ^ '"2°(,) — "3°"(g) 

Since the reverse of step 1 appears to be kinetically diff icult in 

methanol decomposition (implying that step 1 is kinetically diff icult 

in the synthesis), i t  is important to establish the kinetics of this 

reverse step by studying the kinetics of CHgO decomposition over the 

same catalyst (ZnO). 

The surface species HCO^ is one of several surface species proposed 

in the mechanism. This species is very l ikely to result from CHgO 

decomposition on ZnO. Therefore, studying the adsorption of CHgO on ZnO 

by any surface vibrational technique (such as IR or EELS) must be of 

value in this regard. 

The mechanism also emphasizes the relevance of the molecularly 

adsorbed species CH_OH^ and CH_0^ as compared to the other surface 
3 " Z " 

species resulting from the dissociative adsorption of CH^OH and/or 

CHgO on the catalyst surface. Some information regarding the surface 

bond between a catalyst site and a surface species might be deduced by 

investigating the changes in the electric properties of ZnO due to its 
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exposure to CH^OH or CH^O. For example, the sign and magnitude of 

change in the surface electrical conductivity of ZnO, after exposure 

to CHgOH or CHgO, might be used to support a charge transfer model for 

surface bonding. 
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